1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
< # sys extensions
# TODO: handle EINTR correctly
0 _ ==RDONLY
1 _ ==WRONLY
2 _ ==RDWR
bor bor ==RWMASK
1 ==PROTREAD
2 ==PROTWRITE
4 ==PROTEXEC
2 ==MAPPRIVATE
32 ==MAPANONYMOUS
0 ==READ
1 ==WRITE
2 ==OPEN
3 ==CLOSE
9 ==MMAP
11 ==MUNMAP
{ < ==mode ==flags ==fd <
{ flags RWMASK bnot band RDONLY bor =flags } /readonly deff
{ flags RWMASK bnot band WRONLY bor =flags } /writeonly deff
{ flags RWMASK bnot band RDWR bor =flags } /readwrite deff
{ ==path
fd 0 ge { "file already open" die } rep
path "\0" cat flags mode 0 0 0 OPEN sys .asm .syscall -- _ =fd
0 lt { "cannot open " path cat die } rep
} /open deff
{
fd 0 0 0 0 0 CLOSE sys .asm .syscall --
0 lt { "bad things happened to your close call" die } rep
} /close deff
{ ==count
fd 0 lt { "file not open" die } rep
count str .alloc ==buf
fd buf count 0 0 0 READ sys .asm .syscall -- _
0 lt { "read failed" die } rep
buf str .inplacePrefix
} /read deff
{ ==buf
fd 0 lt { "file not open" die } rep
fd buf _ len 0 0 0 WRITE sys .asm .syscall -- _
0 lt { "write failed" die } rep
} /write deff
{ ==buf
fd 0 lt { "file not open" die } rep
{ buf len } {
fd buf _ len 0 0 0 WRITE sys .asm .syscall -- _
0 lt { "write failed" die } rep
buf str .postfix =buf
} loop
} /writeall deff
> > -- } /makefile deff
{ # 0777 = 511
1 neg RDONLY 511 makefile
} /file sys .deff
0 RDONLY 0 makefile /in sys .defv
1 WRONLY 0 makefile /out sys .defv
2 WRONLY 0 makefile /err sys .defv
< # sys .asm extensions
{ ==reqAddr ==reqSize
<
reqAddr
reqSize
PROTEXEC PROTREAD PROTWRITE bor bor
MAPPRIVATE MAPANONYMOUS bor
1 neg
0
MMAP sys .asm .syscall -- _
0 lt { "mmap failed" die } rep
==base
reqSize ==size
{
base size 0 0 0 0 MUNMAP sys .asm .syscall --
0 lt { "munmap failed" die } rep
} =*free
>
} /allocAt sys .asm .deff
{
0 sys .asm .allocAt
} /alloc sys .asm .deff
> --
< # sys .typed extensions
# Returns an array which lists the sequence of curried arguments
# i.e. if f: A -> B -> C -> D -> E the result will be [ A B C D ]
{ ==object
{ "unknown type in typeStack" die } ==unknown
{ "invalid type in typeStack" die } ==invalid
{ [ object 0 1 neg ] } ==literal
object sys .typed .type [
literal # integer
literal # string
literal # scope
invalid # name table
invalid # extension area
{ object sys .typed .inputs ==in
in len 1 neq { "multi-input function in typeStack" die } rep
[ 0 in * 0 1 neg ]
object sys .typed .outputs ==out
out len 1 neq { "multi-output function in typeStack" die } rep
0 out * typeStackInternal
} # function
invalid # function code
{ [ 1 0 object len 1 sub ] 0 object * typeStackInternal } # array
invalid # function type
unknown
unknown
unknown
unknown
unknown
unknown
unknown
] * *
} /typeStackInternal deff
{ [ -01 typeStackInternal ] } /typeStack deff
{ -- 0 } /isVariableType deff
{ ==t
t len 3 neq { "complex execution type non-triple" die } rep
{ "unknown type in typeStack" die } ==unknown
{ "invalid type in typeStack" die } ==invalid
2 t * 1 t * ge
} /isIterableType deff
{ ==arr
0
} /getLoopStart deff
{ ==arr
arr len eq
} /isLoopEnd deff
{ ==arr
1 add
} /doLoopStep deff
# Executing a function f: A->B->C (i.e. B A f) on concrete arguments b a.
# Phase 1
# Foreach argument:
# Find the function input type from top of concrete argument type stack,
# increase viewport from top of concrete type stack
# match type from bottom to top, if type cannot be found, create constant function
# final match is that which creates minimal number of constant function layers
# Phase 2
# Foreach argument type:
# Identify the type stack above the match from phase 1.
# Run from right (stacktop) argument to left (stacklow) argument:
# Take topmost type, check whether it can be found in other stacks (from top)
# Eliminate all matching types via function or loop creation
{ _ ==f sys .typed .inputs ==inputs
[ ] ==concreteArgs
[ ] ==viewPortOffset
# Phase 1
0 inputs len 1 sub range reverse {
# print "Analyzing arg: %d"
inputs * typeStack ==formalTypeStack
_ ==c typeStack ==concreteTypeStack
# "Type-Stack: %d" Dumper($concreteTypeStack) die
0 ==bestViewPortSize
concreteTypeStack len 1 add ==bestViewPortMatch
# "Formal Type Stack: @$formalTypeStack\n" print
# " Type Stack: @$concreteTypeStack\n" print
1 neg concreteTypeStack * isVariableType {
1 concreteTypeStack len range { ==viewPortSize
[ 0 viewPortSize 1 sub range { concreteTypeStack * } each ] ==typeViewPort # explicit each here
# "@$formalTypeStack vs. @$concreteTypeStack\n" print
formalTypeStack concreteTypeStack typeMismatchCount ==viewPortMatch # FIXME this line seems fishy
viewPortMatch bestViewPortMatch lt {
viewPortSize =bestViewPortSize
viewPortMatch =bestViewPortMatch
} rep
} each
} {
concreteTypeStack len =bestViewPortSize
0 =bestViewPortMatch
} ? *
# convert concrete argument to exactly matching function
# ... which calls the concrete argument using its relevant args
bestViewPortMatch {
# if argument is concrete, but we need are construction a function overall, then concrete
# argument needs to be converted to a constant function in whatever domain is necessary
"concrete argument constant functionification needs to be implemented, mismatch: $bestViewPortMatch" die
{ "magic goes here FIXME" die } =c
} {
# zero mismatches, can directly use concrete argument
[ concreteTypeStack len formalTypeStack len sub ] viewPortOffset cat =viewPortOffset
} ? *
[ c ] concreteArgs cat =concreteArgs
} each
# "Viewport Offsets: @viewPortOffset\n" print
# Phase 2,
[
0 viewPortOffset len 1 sub range { ==i
i concreteArgs * typeStack ==remaining
[ 0 i viewPortOffset * 1 sub range { remaining * } each ] # explicit each here
} each
] ==toBeAbstractedTypes
"toBeAbstractedTypes: " dump
toBeAbstractedTypes dump
[ toBeAbstractedTypes { len } each ] any not {
# no types need to be abstracted, function can be called
concreteArgs _ dump _ len dearray f
"attempting to call function (w.o. abstraction)" dump
*
} {
[ ] ==argTypes # the type stack of the new function
[ ] ==stageCalls # which functions to call in each stage
[ ] ==loops # undef for lambda abstraction, loop bound source for loops
0 toBeAbstractedTypes len 1 sub range reverse { ==i
{ i toBeAbstractedTypes * len } {
# TODO: create a decent shift
[ i toBeAbstractedTypes * reverse _ len dearray ==type ] reverse i toBeAbstractedTypes =[]
[ i ] ==stageCalls2
1 neg ==iterationSource
type isIterableType { i =iterationSource } rep
0 i 1 sub range reverse { ==j
j toBeAbstractedTypes * len not not {
0 j toBeAbstractedTypes * * type commonSubType # -> <type> <any exists>
{ =type
iterationSource 0 lt type isIterableType and { j =iterationSource } rep
# TODO: create a decent shift
[ j toBeAbstractedTypes * reverse _ len dearray -- ] reverse j toBeAbstractedTypes =[]
[ j ] stageCalls2 cat =stageCalls2
} rep
} rep
} each
iterationSource 0 ge {
[ 1 neg ] argTypes cat =argTypes
[ iterationSource ] loops cat =loops
} {
[ type ] argTypes cat =argTypes
[ 1 neg ] loops cat =loops
} ? *
stageCalls [ stageCalls2 ] cat =stageCalls
} loop
} each
"concreteArgs: " dump
concreteArgs dump
"stageCalls: " dump
stageCalls dump
"argTypes: " dump
argTypes dump
"loops: " dump
loops dump
{ ==loops ==argTypes ==stageCalls ==concreteArgs
stageCalls len not {
concreteArgs _ len dearray f
*
} {
[ stageCalls _ len dearray ==stage ] =stageCalls
[ argTypes _ len dearray ==argType ] =argTypes
[ loops _ len dearray ==loopIndex ] =loops
loopIndex 0 ge {
[ ] ==results
loopIndex concreteArgs * ==loopedOver
loopedOver getLoopStart ==i
{ i loopedOver isLoopEnd not } {
[ concreteArgs _ len dearray ] ==concreteArgsCopy
stage { ==j
# TODO: think about a single function returning multiple values
i j concreteArgs * * j concreteArgsCopy =[]
} each
[ concreteArgsCopy stageCalls argTypes loops unravel ]
results -01 cat =results
results dump
# TODO: think about a single function returning multiple values
# should be solved by producing two arrays side by side
i loopedOver doLoopStep =i
} loop
results
# push @$data, [\@results, ['array', '[]', [['range', 0, $#results]], [undef]]];
# FIXME the undef can be determined
} {
{ ==v
stage { ==i
v i concreteArgs * * i concreteArgs =[]
} each
concreteArgs stageCalls argTypes loops unravel
} # leave this on the stack
# push @$data, [$abstraction, ['func', 'autoabstraction of ' . $f->[1]->[1], [grep { $_ } @argTypeCopy], undef]];
# FIXME the undef can be determined
} ? *
} ? *
} =*unravel
concreteArgs stageCalls argTypes loops unravel
"execution complete" dump
} ? *
} /execute sys .typed .deff
> --
> --
# global extensions
<
[ /0 /1 /2 /3 /4 /5 /6 /7 /8 /9 /A /B /C /D /E /F ] ==base16singleDigits
[ base16singleDigits { ==first base16singleDigits { first -01 cat } each } each ] ==base16digits
{
[ -01 8 { _ 256 mod base16digits * -01 256 div } rep -- ]
reverse |cat fold
} /base16encode64 deff
{ ==indent _ ==o
{ "unknown type in dump" die } ==unknown
{ "invalid type in dump" die } ==invalid
"" indent { " " cat } rep sys .err .writeall
sys .typed .type [
{ o base16encode64 sys .err .writeall } # integer
{ "\"" o "\"" cat cat sys .err .writeall } # string
{ "<scope>" } # scope
invalid # name table
invalid # extension area
{ "<function>" } # function
invalid # function code
{
"[\n" sys .err .writeall
o { indent 1 add dumpIndented } each
"" indent { " " cat } rep "]" cat sys .err .writeall
} # array
invalid # function type
unknown
unknown
unknown
unknown
unknown
unknown
unknown
] * *
"\n" sys .err .writeall
} /dumpIndented deff
# dump top stack element to sys .err
{ 0 dumpIndented }
> -- /dump deff
# vim: syn=elymas
|