blob: e9c1ad5c96ce03fc0624150ccf5713135192aa7c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
<
<
# read absolute address
# 0 -> address to read
# 0 <- byte read
[[
/rbx :popqReg
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
/rcx :popqReg
/rax :pushqReg
8 /rcx /rcx :movqMemDisp8Reg
/rcx /rcx :movzxMem8Reg64
/rcx 8 /rax :movqRegMemDisp8
/rbx :pushqReg
:retn
]] /eypeek defv
# write absolute address
# 0 -> address to write
# 1 -> value to write
[[
/rbx :popqReg
/rax :popqReg
8 /rax /rax :movqMemDisp8Reg
/rcx :popqReg
8 /rcx /rcx :movqMemDisp8Reg
/cl /rax :movbRegMem
/rbx :pushqReg
:retn
]] /eypoke defv
# call absolute address
# 0 -> address to call
[[
/rbx :popqReg
/rax :popqReg
8 /rax /rax :movqMemDisp8Reg
/rax :callqReg
/rbx :pushqReg
:retn
]] /eyexecute defv
# conduct a syscall
# 0 -> syscall number, rax before entry
# 1 -> r9 before entry
# 2 -> r8 before entry
# 3 -> r10 before entry
# 4 -> rdx before entry
# 5 -> rsi before entry
# 6 -> rdi before entry
# 0 <- rdx after syscall
# 1 <- rax after syscall
[[
8 /r15 :subqImm8Reg
/r15 :popqMem
2 {
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
8 /r15 :subqImm8Reg
/rax /r15 :movqRegMem
} rep # allocate return integers
[ /rax /r9 /r8 /r10 /rdx /rsi /rdi ] { ==reg
reg :popqReg
7 reg /bl :movbMemDisp8Reg
%F0 /bl :andbImmReg
/intLoad reg cat :jzLbl8
%10 /bl :cmpbImmReg
/stringLoad reg cat :jeLbl8
"neither int nor string argument in sys .asm .syscall" ::outputError
:ud2
/stringLoad reg cat :label
24 reg reg :leaqMemDisp8Reg
/doneLoad reg cat :jmpLbl8
/intLoad reg cat :label
8 reg reg :movqMemDisp8Reg
/doneLoad reg cat :label
} each
:syscall
/r15 /rcx :movqMemReg
/rax 8 /rcx :movqRegMemDisp8
/rcx :pushqReg
8 /r15 :addqImm8Reg
/r15 /rcx :movqMemReg
/rdx 8 /rcx :movqRegMemDisp8
/rcx :pushqReg
8 /r15 :addqImm8Reg
/r15 :pushqMem
8 /r15 :addqImm8Reg
:retn
]] /eysyscall defv
# returns the number of allocations in the global allocation list
# 0 <- number of allocations registered
[[
/rbx :popqReg
# allocate return integer
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
/rax :pushqReg
::globalAllocationList /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rdx /rdx :movqMemReg
4 /rdx :shrqImm8Reg
/rdx :decqReg
/rdx 8 /rax :movqRegMemDisp8
/rbx :pushqReg
:retn
]] /eyglobalAllocCount defv
# returns the base address of a global allocation
# 0 -> number of allocation
# 0 <- allocation base address
[[
/rbx :popqReg
# allocate return integer
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
/rcx :popqReg
/rax :pushqReg
8 /rcx /rcx :movqMemDisp8Reg
::globalAllocationList /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rcx :incqReg
4 /rcx :shlqImm8Reg
/rcx /rdx /rdx :movqMemIndexReg
/rdx 8 /rax :movqRegMemDisp8
/rbx :pushqReg
:retn
]] /eyglobalAllocBase defv
# returns the size of a global allocation
# 0 -> number of allocation
# 0 <- allocation size
[[
/rbx :popqReg
# allocate return integer
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
/rcx :popqReg
/rax :pushqReg
8 /rcx /rcx :movqMemDisp8Reg
::globalAllocationList /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rcx :incqReg
4 /rcx :shlqImm8Reg
8 1 /rcx /rdx /rdx :movqMemIndexScaleDisp8Reg
/rdx 8 /rax :movqRegMemDisp8
/rbx :pushqReg
:retn
]] /eyglobalAllocSize defv
# get raw object address from object
# 0 -> object
# 0 <- address of the object
[[
/rbx :popqReg
# allocate return integer
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
8 /rax :popqMemDisp8
/rax :pushqReg
/rbx :pushqReg
:retn
]] /eyrawAddress defv
# generate object from raw object
# 0 -> address of the object
# 0 <- object
[[
/rbx :popqReg
/rax :popqReg
8 /rax :pushqMemDisp8 # push integer value
/rbx :pushqReg
:retn
]] /eyrawObject defv
# get raw code execution address from function object
# 0 -> function object
# 0 <- address of first instruction
[[
/rbx :popqReg
# allocate return integer
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
/rdx :popqReg
24 /rdx /rdx :movqMemDisp8Reg
8 /rdx :addqImm8Reg
/rdx 8 /rax :movqRegMemDisp8
/rax :pushqReg
/rbx :pushqReg
:retn
]] /eyrawCodeAddress defv
# (template) program boot sequence after freeze
[[
/rsp :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 10
/r15 :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 20
::heapEnd /rax :movqImmReg # 30
/rbx :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 40
/rbx /rax :movqRegMem # 43
::unusedHeapStart /rax :movqImmReg # 53
/rbx :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 63
/rbx /rax :movqRegMem # 66
::currentScope /rax :movqImmReg # 76
/rbx :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 86
/rbx /rax :movqRegMem # 89
:globalAllocations .base /rax :movqImmReg # 99
/rbx :movqImmOOBReg %EE %EE %EE %EE %EE %EE %EE %EE # 109
/rbx /rax :movqRegMem # 112
# empty encoding buffer to ensure the GC does not follow residue from freeze into unallocated memory
:quoteEncodingBuffer /rdi :movqImmReg
:STACKSIZE 8 sub /rcx :movqImmReg
3 /rcx :shrqImm8Reg
/rax /rax :xorqRegReg
:reprcx :stosq
|ey* /rax :movqImmReg
/rax :callqReg
:ud2
]] /eyprogramStart defv
> _ ==globalFunctions { defv }' ::allocateOffsetStruct
<
# patch programStart to current program state
# this function must be called first in sys .freeze because it has to unwind the exactly
# correct number of things from the stack to make the sys .freeze execution transparent
# TODO: actually do this (e.g. by recoding the freeze startup in assembly)
# TODO: ... for now just flush the call stack on freeze
# returns the number of allocations according to frozen alloc list fill state
[[
/rbx :popqReg
eyprogramStart /rax :movqImmReg
/rsp 2 /rax :movqRegMemDisp8
# /r15 12 /rax :movqRegMemDisp8 # TODO: something like this (but correctly adjusted) would be right
:mainCallStack .base :STACKSIZE add /rdx :movqImmReg # TODO whereas this just flushes the stack
/rdx 12 /rax :movqRegMemDisp8
::heapEnd /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rdx 32 /rax :movqRegMemDisp8
::unusedHeapStart /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rdx 55 /rax :movqRegMemDisp8
::currentScope /rdx :movqImmReg
/rdx /rdx :movqMemReg
16 /rdx /rdx :movqMemDisp8Reg # unwind one scope
/rdx 78 /rax :movqRegMemDisp8
:globalAllocations .base /rdx :movqImmReg
/rdx /rdx :movqMemReg
/rdx :pushqReg # store allocation count for later return value
/rdx 101 /rax :movqRegMemDisp8
::internalAllocateInteger /rax :movqImmReg
/rax :callqReg
# type zero does not need to be changed
/rdx :popqReg
4 /rdx :shrqImm8Reg
/rdx :decqReg
/rdx 8 /rax :movqRegMemDisp8 # store value
/rax :pushqReg
/rbx :pushqReg
:retn
]] /eypatchProgramStart defv
> _ ==globalFunctions2 { defv }' ::allocateOffsetStruct
"asm" enterSubScope
[
globalFunctions keys eydeff { | }' createScopeEntries
globalFunctions2 keys eydeff { | }' createScopeEntries
createScopeExtensionEntries
] :execute
leaveSubScope
> --
# vim: syn=elymas
|