diff options
| -rw-r--r-- | chapter/2/futures.md | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/chapter/2/futures.md b/chapter/2/futures.md index 4e6a3ee..d3e2d7e 100644 --- a/chapter/2/futures.md +++ b/chapter/2/futures.md @@ -222,7 +222,7 @@ We define Implicit promises as ones where we don’t have to manually trigger th The idea for explicit futures were introduced in the Baker and Hewitt paper. They’re a little trickier to implement, and require some support from the underlying language, and as such they aren’t that common. The Baker and Hewitt paper talked about using futures as placeholders for arguments to a function, which get evaluated in parallel, but when they’re needed. Also, lazy futures in Alice ML have a similar explicit invocation mechanism, the first thread touching a future triggers its evaluation. -Implicit futures were introduced originally by Friedman and Wise in a paper in 1978. The ideas presented in that paper inspired the design of promises in MultiLisp. Futures are also implicit in Scala and Javascript, where they’re supported as libraries on top of the core languages. Implicit futures can be implemented this way as they don’t require support from language itself. Alice ML’s concurrent futures are also an example of implicit invocation. +Implicit futures were introduced originally by Friedman and Wise in a paper in 1978. The ideas presented in that paper inspired the design of futures in MultiLisp. Futures are also implicit in Scala and Javascript, where they’re supported as libraries on top of the core languages. Implicit futures can be implemented this way as they don’t require support from language itself. Alice ML’s concurrent futures are also an example of implicit invocation. # Promise Pipelining One of the criticism of traditional RPC systems would be that they’re blocking. Imagine a scenario where you need to call an API ‘a’ and another API ‘b’, then aggregate the results of both the calls and use that result as a parameter to another API ‘c’. Now, the logical way to go about doing this would be to call A and B in parallel, then once both finish, aggregate the result and call C. Unfortunately, in a blocking system, the way to go about is call a, wait for it to finish, call b, wait, then aggregate and call c. This seems like a waste of time, but in absence of asynchronicity, it is impossible. Even with asynchronicity, it gets a little difficult to manage or scale up the system linearly. Fortunately, we have promises. |
