aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMarshall Lochbaum <mwlochbaum@gmail.com>2022-02-05 20:24:07 -0500
committerMarshall Lochbaum <mwlochbaum@gmail.com>2022-02-06 08:04:46 -0500
commit814b56cd148846cde0d7ac62f702ead11c7d1d67 (patch)
treefd20955651a4869c3689dcb846238a6e40ce40cb
parentd59799a44faa0154307d2e2c033d6908adf7cd65 (diff)
Derivation had some untranslated J
-rw-r--r--panap.bqn8
1 files changed, 4 insertions, 4 deletions
diff --git a/panap.bqn b/panap.bqn
index 33bd5a5..358e3c1 100644
--- a/panap.bqn
+++ b/panap.bqn
@@ -123,11 +123,11 @@ Get_panap_coeff ← { 𝕊 n‿rr‿f:
# ---------------------------------------------------------
" # Derivation
# Transfer function for an all-pass filter: argument is z,
-# and rs and re are (ט∘|) and (9&o.) of the complex parameter
-H = (1 + (rs×ט) - 2×re&×) ÷ (ט + rs - 2×re&×)
+# and rs and re are (ט|) and (2÷˜+⟜+) of the complex parameter
+H = (1 + (rs×ט) - 2×re⊸×) ÷ (ט + rs - 2×re⊸×)
# Derivative with respect to z
-Hp = (2 × (re-˜rs&×) - H×(1-re)) ÷ (ט+rs-2×re&×)
- = (2 × (× rs-H) - re×1-˜H) ÷ (ט+rs-2×re&×)
+Hp = (2 × (re-˜rs⊸×) - H×(1-re)) ÷ (ט+rs-2×re⊸×)
+ = (2 × (× rs-H) - re×1-˜H) ÷ (ט+rs-2×re⊸×)
# Definition of the phase transfer function T
(⋆⍳T ω) = (H ⋆⍳ω)