diff options
| author | Marshall Lochbaum <mwlochbaum@gmail.com> | 2022-02-05 20:24:07 -0500 |
|---|---|---|
| committer | Marshall Lochbaum <mwlochbaum@gmail.com> | 2022-02-06 08:04:46 -0500 |
| commit | 814b56cd148846cde0d7ac62f702ead11c7d1d67 (patch) | |
| tree | fd20955651a4869c3689dcb846238a6e40ce40cb | |
| parent | d59799a44faa0154307d2e2c033d6908adf7cd65 (diff) | |
Derivation had some untranslated J
| -rw-r--r-- | panap.bqn | 8 |
1 files changed, 4 insertions, 4 deletions
@@ -123,11 +123,11 @@ Get_panap_coeff ← { 𝕊 n‿rr‿f: # --------------------------------------------------------- " # Derivation # Transfer function for an all-pass filter: argument is z, -# and rs and re are (ט∘|) and (9&o.) of the complex parameter -H = (1 + (rs×ט) - 2×re&×) ÷ (ט + rs - 2×re&×) +# and rs and re are (ט|) and (2÷˜+⟜+) of the complex parameter +H = (1 + (rs×ט) - 2×re⊸×) ÷ (ט + rs - 2×re⊸×) # Derivative with respect to z -Hp = (2 × (re-˜rs&×) - H×(1-re)) ÷ (ט+rs-2×re&×) - = (2 × (× rs-H) - re×1-˜H) ÷ (ט+rs-2×re&×) +Hp = (2 × (re-˜rs⊸×) - H×(1-re)) ÷ (ט+rs-2×re⊸×) + = (2 × (× rs-H) - re×1-˜H) ÷ (ט+rs-2×re⊸×) # Definition of the phase transfer function T (⋆⍳T ω) = (H ⋆⍳ω) |
