aboutsummaryrefslogtreecommitdiff
path: root/impl.bqn
blob: f03d5c399c1846e7e77d8edc62d6133fa41a2035 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
β—Ά ← {𝕨((𝕨𝔽𝕩)βŠ‘π•˜){𝔽}𝕩}     # LIMITED to number left operand result
⊘ ← {𝕨((1{𝔽}𝕨)-0)◢𝔽‿𝔾 𝕩}
#⊒ ← {𝕩}  # Prevents dyadic negative ⍟
⊣ ← {𝕩}⊘{𝕨}
˜ ← {π•©π”½π•¨βŠ£π•©}
∘ ← {𝔽𝕨𝔾𝕩}
β—‹ ← {(𝔾𝕨)𝔽𝔾𝕩}
⊸ ← {(π”½π•¨βŠ£π•©)𝔾𝕩}
⟜ ← {(π•¨βŠ£π•©)𝔽𝔾𝕩}
⍟ ← {𝕨((𝕨𝔾𝕩)βŠ‘βŠ’β€Ώπ•—){𝔽}𝕩}   # LIMITED to boolean right operand result

# LIMITED to numeric arguments for scalar cases
√ ← β‹†βŸœ(Γ·2)   ⊘ (β‹†βŸœΓ·Λœ)
∧ ←            Γ—
∨ ←            (+-Γ—)
Β¬ ← 1+-
< ← {⟨⟩β₯ŠβŸ¨π•©βŸ©} ⊘ (Β¬β‰€Λœ)
> ←            (¬≀)
β‰₯ ← !∘0      ⊘ (β‰€Λœ)
β‰’ ↩ IsArrayβ—ΆβŸ¨βŸ©β€Ώβ‰’  # LIMITED to monadic case
Length ← (0<0βŠ‘β‰’)β—ΆβŸ¨1β‹„0βŠ‘βŠ’βŸ©βˆ˜β‰’
β‰  ← Length   ⊘ (¬∘=)
Γ— ↩ 0⊸(<->)  ⊘ Γ—
| ← Γ—βŸœΓ—      ⊘ {𝕩-π•¨Γ—βŒŠπ•©Γ·π•¨}

_fold←{
  ! 1==𝕩
  l←≠v←𝕩 β‹„ F←𝔽
  r←𝕨 (0<l)β—Ά{𝕩⋄Identity f}β€Ώ{l↩l-1β‹„lβŠ‘π•©}⊘⊣ 𝕩
  {r↩(π•©βŠ‘v)F r}⌜(l-1)⊸-βŒœβ†•l
  r
}
Β΄ ← _fold


#⌜
# LAYER 2: Pervasion
# After defining _perv, we apply it to all scalar functions,
# making them pervasive. I'm not going to write that out.

ToArray ← <⍟(Β¬IsArray)

∾ ← {k←≠𝕨⋄kβŠΈβ‰€β—ΆβŸ¨βŠ‘βŸœπ•¨β‹„-⟜kβŠ‘π•©ΛœβŸ©βŒœβ†•k+≠𝕩}  # LIMITED to two vector arguments

_eachd←{
  _e←{ # 𝕨 has smaller or equal rank
    k←≠p←≒𝕨 β‹„ q←≒𝕩
    ! ∧´(βŠ‘βŸœp=βŠ‘βŸœq)βŒœβ†•k
    l←×´(qβŠ‘Λœk⊸+)βŒœβ†•qβ‰ βŠΈ-k
    a←β₯Šπ•¨ β‹„ b←β₯Šπ•©
    qβ₯Šβ₯Š(β‰ a) (βŠ‘βŸœa𝔽lβŠΈΓ—βŠΈ+βŠ‘b˜)βŒœβ—‹β†• l
  }
  (>β—‹=)β—ΆβŸ¨π”½_eβ‹„π”½Λœ_e˜⟩
}

Β¨ ↩ {(π”½βŒœ)⊘(𝔽_eachdβ—‹ToArray)}

_perv←{ # Pervasion
  (βŠ’βŠ˜βˆ¨β—‹IsArray)β—ΆβŸ¨π”½β‹„π”½{𝕨𝔽_perv𝕩}¨⟩
}
⌊ ↩ ⌊        ⊘ ({(𝕨>𝕩)βŠ‘π•¨β€Ώπ•©} _perv)
⌈ ← -∘⌊∘-    ⊘ ({(𝕨<𝕩)βŠ‘π•¨β€Ώπ•©} _perv)

identity ← {(0βŠ‘π•¨){𝕗=𝕩}◢𝕩‿(1βŠ‘π•¨)}Β΄ ⟨+β€Ώ0,-β€Ώ0,Γ—β€Ώ1,Γ·β€Ώ1,⋆‿1,βˆšβ€Ώ1,βˆ§β€Ώ1,βˆ¨β€Ώ0,|β€Ώ0,βŒŠβ€Ώβˆž,βŒˆβ€ΏΒ―βˆž,<β€Ώ0,≀‿1,=β€Ώ1,β‰₯β€Ώ1,>β€Ώ0,β‰ β€Ώ0,βŠ‘βŸ¨!∘0⟩⟩


#⌜
# LAYER 3: Remove other limits
# Now all implementations are full except ∾ and βŠ‘; ↕ is monadic only

Int←IsArrayβ—ΆβŸ¨βŒŠβŠΈ=,0⟩
Nat←IsArrayβ—ΆβŸ¨0βŠΈβ‰€βˆ§βŒŠβŠΈ=,0⟩

Deshape←IsArrayβ—Ά{βŸ¨π•©βŸ©}β€Ώβ₯Š
Reshape←{
  ! 1β‰₯=𝕨
  𝕨↩β₯Šπ•¨
  ! ∧´Nat¨𝕨
  l←×´𝕨
  n←×´≒𝕩
  𝕨β₯Š{
    𝕩(0<n)β—ΆβŸ¨Type⊸(⊣⌜)β‹„β₯ŠβŠΈ{βŠ‘βŸœπ•¨Β¨n|𝕩}βŸ©β†•l
  }⍟(lβ‰ n)𝕩
}⟜ToArray
β₯Š ↩ Deshape        ⊘ Reshape

Range←{
  I←{!Nat𝕩⋄↕𝕩}
  M←{!1==𝕩⋄(<⟨⟩)β₯ŠβŠΈβˆΎβŒœΒ΄I¨𝕩}
  IsArrayβ—ΆIβ€ΏM 𝕩
}

match←{¬∘(0βŠ‘π•¨)β—Ά(1βŠ‘π•¨)‿𝕩}´⟨
  βŸ¨β‰ β—‹IsArray , 0⟩
  ⟨¬IsArray∘⊒, =⟩
  βŸ¨β‰ β—‹=       , 0⟩
  βŸ¨βˆ¨Β΄β‰ β—‹β‰’     , 0⟩
  {∧´β₯Šπ•¨Match¨𝕩}
⟩

Depth←IsArrayβ—Ά0β€Ώ{1+0⌈´DepthΒ¨β₯Šπ•©}

↕ ↩ Range

≑ ← Depth          ⊘ Match
β‰’ ↩ β‰’              ⊘ (Β¬Match)


#⌜
# LAYER 4: Operators


DropV← {βŠ‘βŸœπ•©Β¨π•¨+↕𝕨-Λœβ‰ π•©}
Cell ← DropVβŸœβ‰’
Pair ← {βŸ¨π•©βŸ©} ⊘ {βŸ¨π•¨,π•©βŸ©}

Merge←{
  cβ†β‰’βŠ‘π•©
  ! ∧´β₯Š(c≑≒)¨𝕩
  π•©βŠ‘βŸœβ₯ŠΛœβŒœcβ₯Šβ†•Γ—Β΄c
}⍟(0<β‰ βˆ˜β₯Š)
> ↩ Merge          ⊘ >
≍ ← >∘Pair
_ranks ← {⟨2⟩⊘⟨1,0⟩((⊣-1+|)ΛœβŸœβ‰ βŠ‘Β¨<∘⊒)β₯Šβˆ˜π”½}
_depthOp_←{
  neg←0>n←𝕨𝔾_ranks𝕩 β‹„ F←𝔽
  _d←{
    R←(𝕗+neg)_d
    𝕨(2β₯Š(negβˆ§π•—β‰₯0)∨(0βŒˆπ•—)β‰₯Pair○≑)β—Ά(⟨RΒ¨β‹„RβŸœπ•©Β¨βˆ˜βŠ£βŸ©β‰βŸ¨(𝕨R⊒)Β¨βˆ˜βŠ’β‹„F⟩)𝕩
  }
  𝕨 n _d 𝕩
}
βš‡ ← _depthOp_
_rankOp_←{
  k←𝕨(Pairβ—‹= (0β‰€βŠ’)β—ΆβŸ¨βŒŠβŸœ-,0⌈-⟩¨ 𝔾_ranks)𝕩
  Enc←{
    fβ†βŠ‘βŸœ(≒𝕩)¨↕𝕨
    c←×´s←𝕨Cell𝕩
    fβ₯ŠβŠ‘βŸœ(β₯Šπ•©)¨∘((sβ₯Šβ†•c)+cΓ—βŠ’)¨↕×´f
  }
  Enc↩(>⟜0+β‰₯⟜=)β—ΆβŸ¨<⊒,Enc,<¨⊒⟩
  > ((0βŠ‘k)Enc𝕨) 𝔽¨ ((1-Λœβ‰ )βŠΈβŠ‘k)Enc𝕩
}
_scan←{
  ! IsArray 𝕩
  ! 1≀=𝕩
  F←𝔽
  {
    r←β₯Šπ•© β‹„ l←≠𝕩 β‹„ c←×´1 Cell 𝕩
    {r↩r𝕩_amendΛœπ•¨Fβ—‹(βŠ‘βŸœr)𝕩}⟜(c⊸+)¨↕c-Λœβ‰ r
    (≒𝕩)β₯Šr
  }⍟(0<β‰ βˆ˜β₯Š)𝕩
}

` ← _scan
βŽ‰ ← _rankOp_
˘ ← {π”½βŽ‰Β―1}
_insert←{
  ! 1≀=𝕩
  𝕨 𝔽´ <Λ˜π•©
}
˝ ← _insert


#⌜
# LAYER 5: Structural functions

_onAxes_←{
  F←𝔽
  (𝔾<≑)βˆ˜βŠ£β—Ά{ # One axis
    ! 1≀=𝕩
    𝕨F𝕩
  }β€Ώ{ # Multiple axes
    ! 1β‰₯=𝕨
    ! 𝕨≀○≠≒𝕩
    R←{(0βŠ‘β₯Šπ•¨)F(1 DropV 𝕨)⊸RΛ˜π•©}⍟{0<≠𝕨}
    𝕨R𝕩
  }
}

SelSub←{
  ! IsArray 𝕨
  ! ∧´β₯ŠIntΒ¨ 𝕨
  ! ∧´β₯Š 𝕨 (β‰₯⟜-∧<) ≠𝕩
  𝕨↩𝕨+(≠𝕩)×𝕨<0
  𝕨(1β‰ =∘⊒)β—Ά{
    βŠ‘βŸœπ•©Β¨π•¨
  }β€Ώ{
    c←×´s←1 Cell 𝕩
    βŠ‘βŸœ(β₯Šπ•©)Β¨(c×𝕨)+⌜sβ₯Šβ†•c
  }𝕩
}
Select←ToArray⊸(SelSub _onAxes_ 1)
⊏ ← 0⊸Select       ⊘ Select

JoinTo←{
  s←𝕨Pair○≒𝕩
  a←1⌈´k←≠¨s
  ! ∧´1β‰₯a-k
  c←(kΒ¬a)+⟜(↕a-1)⊸⊏¨s
  ! ≑´c
  l←+Β΄(a=k)βŠ£β—Ά1β€Ώ(0βŠ‘βŠ’)Β¨s
  (⟨l⟩∾0βŠ‘c)β₯Šπ•¨βˆΎβ—‹β₯Šπ•©
}

Take←{
  T←{
    ! Int 𝕨
    l←≠𝕩
    i←(l+1)|Β―1⌈l⌊((𝕨<0)×𝕨+l)+↕|𝕨
    i⊏JoinTo⟜(1⊸Cellβ₯ŠType)⍟(∨´l=i)𝕩
  }
  𝕨 T _onAxes_ 0 (⟨1⟩β₯ŠΛœ0βŒˆπ•¨-β—‹β‰ βŠ’)βŠΈβˆΎβˆ˜β‰’βŠΈβ₯Šπ•©
}
Prefixes ← {!1≀=𝕩 β‹„ (↕1+≠𝕩)TakeΒ¨<𝕩}
↑ ← Prefixes       ⊘ Take
Drop←{
  s←(≠𝕨)(βŠ£β†‘βŠ’βˆΎΛœ1β₯ŠΛœ0⌈-βŸœβ‰ )≒𝕩
  ((sΓ—Β―1⋆𝕨>0)+(-s)⌈sβŒŠπ•¨)↑𝕩
}
Suffixes ← {!1≀=𝕩 β‹„ (↕1+≠𝕩)DropΒ¨<𝕩}
↓ ← Suffixes       ⊘ Drop

Windows←{
  ! IsArray 𝕩
  ! 1β‰₯=𝕨
  ! 𝕨≀○≠≒𝕩
  ! ∧´NatΒ¨β₯Šπ•¨
  s←(≠𝕨)↑≒𝕩
  ! βˆ§Β΄π•¨β‰€1+s
  𝕨{(∾⟜(π•¨β‰ βŠΈβ†“β‰’π•©)βˆ˜β‰’β₯Š>)<Β¨βŠΈβŠβŸœπ•©Β¨s(Β¬+βŒœβ—‹β†•βŠ’)β₯Šπ•¨}⍟(0<≠𝕨)𝕩
}

Reverse ← {!1≀=𝕩 β‹„ (-β†•βŠΈΒ¬β‰ π•©)βŠπ•©}
Rotate ← {!Int𝕨 β‹„ l←≠𝕩⋄(l|𝕨+↕l)βŠπ•©} _onAxes_ 0

Indices←{
  ! 1==𝕩
  ! ∧´Nat¨𝕩
  βŸ¨βŸ©βˆΎΒ΄π•©β₯ŠΒ¨β†•≠𝕩
}
Rep ← Indices⊸⊏
Replicate ← {0<=𝕨}β—Ά(β₯ŠΛœβŸœβ‰ Rep⊒)β€Ώ{!𝕨=○≠𝕩⋄𝕨Rep𝕩} _onAxes_ (1-0=β‰ )

↕ ↩ ↕              ⊘ Windows
⌽ ← Reverse        ⊘ Rotate
/ ← Indices        ⊘ Replicate


#⌜
# LAYER 6: Everything else

Join←{
  C←(<⟨⟩)β₯ŠβŠΈβˆΎβŒœΒ΄βŠ’  # Cartesian array product
  ! IsArray 𝕩
  s←≒¨𝕩
  d←≠0βŠ‘β₯Šs
  ! ∧´β₯Šd=β‰ Β¨s
  ! dβ‰₯=𝕩
  l←(≒𝕩){(π•©βŠ‘βŸœβ‰’aβŠ‘Λœ(j=𝕩)βŠΈΓ—)¨↕𝕨}Β¨j←↕r←=a←𝕩
  ! (r↑¨s)≑C l
  i←C{p←+´¨↑𝕩⋄(↕0βŠ‘βŒ½p)-𝕩/Β―1↓p}Β¨l
  >i<¨⊸⊏¨l/𝕩
}⍟(0<β‰ βˆ˜β₯Š)

Group←{
  ! IsArray 𝕩
  Chk←{!1==𝕩⋄!∧´Int¨𝕩⋄!∧´¯1≀𝕩⋄≠𝕩}
  l←(1<≑)β—ΆChkβ€Ώ{!1==𝕩⋄Chk¨𝕩}𝕨
  ! l≀○≠≒𝕩
  ! ∧´l=lβ‰ βŠΈβ†‘β‰’π•©
  (π•¨βŠΈ=/π•©Λœ)¨↕1+Β―1βŒˆΒ΄βš‡1𝕨
}

∾ ↩ Join           ⊘ JoinTo
βŠ” ← Group⟜(β†•β‰ βš‡1)   ⊘ Group

Pick1←{
  ! 1==𝕨
  ! 𝕨=β—‹β‰ s←≒𝕩
  ! ∧´Int¨𝕨
  ! βˆ§Β΄π•¨(β‰₯⟜-∧<)s
  𝕨↩𝕨+s×𝕨<0
  (β₯Šπ•©)βŠ‘Λœ0(βŠ‘βŸœπ•¨+βŠ‘βŸœsΓ—βŠ’)Β΄-β†•βŠΈΒ¬β‰ π•¨
}
Pickd←(∨´∘β₯ŠIsArray¨∘⊣)β—ΆPick1β€Ώ{PickdβŸœπ•©Β¨π•¨}
Pick←IsArrayβ—Άβ₯Šβ€ΏβŠ’⊸Pickd
βŠ‘ ↩ (0Β¨βˆ˜β‰’)⊸Pick    ⊘ Pick
β—Ά ↩ {𝕨((𝕨𝔽𝕩)βŠ‘π•˜){𝔽}𝕩}  # Same definition, new Pick

# Searching
IndexOf←{
  c←1-˜=𝕨
  ! 0≀c
  𝕨 (0<≠𝕨)β—ΆβŸ¨0βŽ‰c∘⊒,(+˝∧`)β‰’βŽ‰cβŽ‰cβ€ΏβˆžβŸ© 𝕩
}
UniqueMask←{
  ! 1≀=𝕩
  u←0↑𝕩
  {(β‰ u)>βŠ‘u IndexOf 𝕩}β—Ά{u↩uβˆΎπ•©β‹„1}β€Ώ0Λ˜π•©
}
Find←{
  r←=𝕨
  ! r≀=𝕩
  𝕨 β‰‘βŽ‰r (≒𝕨) β†•βŽ‰r 𝕩
}

⊐ ← !∘0            ⊘ IndexOf
∊ ← UniqueMask     ⊘ (⊐˜<β‰ βˆ˜βŠ’)
⍷ ← ∊⊸/            ⊘ Find

ReorderAxes←{
  𝕩↩<⍟(0=≑)𝕩
  ! 1β‰₯=𝕨
  𝕨↩β₯Šπ•¨
  ! 𝕨≀○≠≒𝕩
  ! ∧´NatΒ¨β₯Šπ•¨
  r←(=𝕩)-+Β΄Β¬βˆŠπ•¨
  ! βˆ§Β΄π•¨<r
  π•¨β†©π•¨βˆΎπ•¨(¬∘∊˜/⊒)↕r
  (π•¨βŠΈβŠβŠ‘π•©Λœ)Β¨β†•βŒŠΒ΄Β¨π•¨βŠ”β‰’π•©
}
Transpose←(=-1˜)⊸ReorderAxes⍟(0<=)
⍉ ← Transpose      ⊘ ReorderAxes

# Sorting
_cmpLen ← {
  e←𝕨-Λœβ—‹(∨´0⊸=)𝕩
  c←𝕗
  𝕨(e=0)β—ΆβŸ¨0,eβŸ©β€Ώ{
    c←×c+𝕨-○≠𝕩
    rβ†π•¨βŒŠβ—‹β‰ π•©
    l←𝕨{
      i←+´∧`𝕨=𝕩
      mβ†Γ—Β΄βŠ‘βŸœπ•¨Β¨β†•i
      {c↩×-´𝕩⋄m↩mΓ—βŒŠΒ΄π•©}∘(βŠ‘Β¨βŸœπ•¨β€Ώπ•©)⍟(r⊸>)i
      m
    }β—‹(((-1+↕r)+β‰ )⊸{βŠ‘βŸœπ•©Β¨π•¨})𝕩
    ⟨l,c⟩
  }𝕩
}
_getCellCmp ← {
  Ci←𝔽⋄l←𝕨⋄c←𝕩
  {
    a←𝕨⋄b←𝕩
    S←(l⊸=)β—Ά{S∘(1+𝕩)⍟(0⊸=)a Ciβ—‹(π•©βŠΈ+)b}β€Ώc
    S 0
  }
}
Cmp ← βˆ¨β—‹IsArrayβ—Ά{ # No arrays
  𝕨(>-<)𝕩 # Assume they're numbers
}β€Ώ{ # At least one array
  lc←𝕨(𝕨-β—‹IsArray𝕩)_cmpLen○≒𝕩
  cc ← (βŠ‘βŸœ(β₯Šπ•¨))⊸Cmp⟜(βŠ‘βŸœ(β₯Šπ•©)) _getCellCmpΒ΄ lc
  Cc˜0
}

_binSearch ← {
  B ← 𝔽
  {
    R←{𝕨{a←B m←𝕩+hβ†βŒŠπ•¨Γ·2β‹„(h+aΓ—2|𝕨)R aβŠ‘π•©β€Ώm}⍟(>⟜1)𝕩}
    1+(𝕩+1)R Β―1
  }⍟(0⊸<)
}
_grade←{
  ! 1≀=𝕩
  m←×´1 Cell 𝕩 β‹„ Ci←𝔽○(βŠ‘βŸœ(β₯Šπ•©))
  cc←m Ci _getCellCmp 0
  Ins←{π•¨βŠΈ(≀+<)β—ΆβŸ¨βŠ‘βŸœπ•©,i,-⟜1βŠ‘π•©ΛœβŸ©Β¨β†•1+i←≠𝕩}
  ⟨⟩ {𝕩Ins˜(𝕨(Cc≀0˜)˜mΓ—βŠ‘βŸœπ•©)_binSearch≠𝕩}Β΄ mΓ—(↕-˜-⟜1)≠𝕩
}
_bins←{
  c←1-˜=𝕨
  ! 0≀c
  ! c≀=𝕩
  lw←×´sw←1 Cell 𝕨
  cw←lw 𝔽○(βŠ‘βŸœ(β₯Šπ•¨)) _getCellCmp 0
  ! 0⊸<β—ΆβŸ¨1,∧´0β‰€ΛœΒ·cw¨⟜(lw⊸+)lwΓ—β†•βˆ˜-⟜1βŸ©β‰ π•¨
  cx←c-˜=𝕩
  sx←cx Cell 𝕩 β‹„ lc←sw 0 _cmpLen sx
  cc ← (βŠ‘βŸœ(β₯Šπ•¨))βŠΈπ”½βŸœ(βŠ‘βŸœ(β₯Šπ•©)) _getCellCmpΒ΄ lc
  B←(Γ—Β΄sw)βŠΈΓ—βŠΈCc≀0˜
  (≠𝕨) {BβŸœπ•© _binSearch 𝕨}Β¨ (Γ—Β΄sx) Γ— β₯ŠβŸœ(↕×´)βŠ‘βŸœ(≒𝕩)¨↕cx
}

⍋ ←   Cmp _grade   ⊘ (  Cmp _bins)
⍒ ← -∘Cmp _grade   ⊘ (-∘Cmp _bins)
∧ ↩ β‹βŠΈβŠ            ⊘ ∧
∨ ↩ β’βŠΈβŠ            ⊘ ∨

OccurrenceCount ← ⊐˜(⊒-⊏)β‹βˆ˜β‹
ProgressiveIndexOf ← {π•¨βŠβ—‹(β‰Λ˜βŸœOccurrenceCountπ•¨βŠΈβŠ)𝕩}
βŠ’ ← OccurrenceCount⊘ ProgressiveIndexOf

_repeat_←{
  n←𝕨𝔾𝕩
  f←0βŠ‘π•¨βŸ¨π”½βŸ©βŠ˜βŸ¨π•¨π”½βŠ’βŸ©π•©
  l←u←0
  {!Int𝕩⋄l↩lβŒŠπ•©β‹„u↩uβŒˆπ•©}βš‡0 n
  a←𝕩⋄_p←{π”½βˆ˜βŠ£`(1+𝕩)β₯Š<a}
  pos←F _p u β‹„ neg←F⁼_p-l
  (|βŠ‘<⟜0βŠ‘posβ€Ώneg˜)βš‡0 n
}
⍟ ↩ _repeat_