diff options
Diffstat (limited to 'docs')
| -rw-r--r-- | docs/spec/system.html | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/docs/spec/system.html b/docs/spec/system.html index 9b43e094..87a7f942 100644 --- a/docs/spec/system.html +++ b/docs/spec/system.html @@ -601,7 +601,7 @@ <p>More accurately the modifier <code><span class='Modifier2'>β’_maxTime_</span></code> <em>may</em> fail if execution of <code><span class='Function'>π½</span></code> takes over <code><span class='Value'>π¨</span><span class='Function'>πΎ</span><span class='Value'>π©</span></code> seconds, and should fail as quickly as it is practically able to. The most likely way to implement this modifier is to interrupt execution at the given time. If <code><span class='Function'>π½</span></code> completes before the interrupt there is no need to measure the amount of time it actually took.</p> <h2 id="math"><a class="header" href="#math">Math</a></h2> <p>System namespace <code><span class='Value'>β’math</span></code> contains mathematical utilities that are not easily implemented with basic arithmetic, analogous to C's <code><span class='Value'>math.h</span></code>.</p> -<p>Other correctly-rounded arithmetic: monadic <code><span class='Function'>Cbrt</span><span class='Gets'>β</span><span class='Number'>3</span><span class='Modifier2'>βΈ</span><span class='Function'>β</span></code>, <code><span class='Function'>Log2</span><span class='Gets'>β</span><span class='Number'>2</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Function'>β’</span></code>, <code><span class='Function'>Log10</span><span class='Gets'>β</span><span class='Number'>10</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Function'>β’</span></code>, <code><span class='Function'>Log1p</span><span class='Gets'>β</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Number'>1</span><span class='Modifier2'>βΈ</span><span class='Function'>+</span></code>, <code><span class='Function'>Expm1</span><span class='Gets'>β</span><span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>Λ</span><span class='Function'>β</span></code>; dyadic <code><span class='Function'>Hypot</span><span class='Gets'>β</span><span class='Function'>+</span><span class='Modifier2'>βΎ</span><span class='Paren'>(</span><span class='Function'>Γ</span><span class='Modifier'>Λ</span><span class='Paren'>)</span></code>.</p> +<p>Correctly-rounded arithmetic functions: monadic <code><span class='Function'>Cbrt</span><span class='Gets'>β</span><span class='Number'>3</span><span class='Modifier2'>βΈ</span><span class='Function'>β</span></code>, <code><span class='Function'>Log2</span><span class='Gets'>β</span><span class='Number'>2</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Function'>β’</span></code>, <code><span class='Function'>Log10</span><span class='Gets'>β</span><span class='Number'>10</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Function'>β’</span></code>, <code><span class='Function'>Log1p</span><span class='Gets'>β</span><span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Number'>1</span><span class='Modifier2'>βΈ</span><span class='Function'>+</span></code>, <code><span class='Function'>Expm1</span><span class='Gets'>β</span><span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>Λ</span><span class='Function'>β</span></code>; dyadic <code><span class='Function'>Hypot</span><span class='Gets'>β</span><span class='Function'>+</span><span class='Modifier2'>βΎ</span><span class='Paren'>(</span><span class='Function'>Γ</span><span class='Modifier'>Λ</span><span class='Paren'>)</span></code>.</p> <p>Standard trigonometric functions <code><span class='Function'>Sin</span></code>, <code><span class='Function'>Cos</span></code>, <code><span class='Function'>Tan</span></code>, <code><span class='Function'>Sinh</span></code>, <code><span class='Function'>Cosh</span></code>, <code><span class='Function'>Tanh</span></code>, with inverses preceded by <code><span class='Value'>a</span></code> (<code><span class='Function'>ASin</span></code>, etc.) and accessable with <code><span class='Modifier'>βΌ</span></code>. Additionally, the dyadic function <code><span class='Function'>ATan2</span></code> giving the angle of vector <code><span class='Value'>π¨</span><span class='Ligature'>βΏ</span><span class='Value'>π©</span></code> relative to <code><span class='Number'>1</span><span class='Ligature'>βΏ</span><span class='Number'>0</span></code>. All trig functions measure angles in radians.</p> <p>Special functions <code><span class='Function'>Fact</span></code> and <code><span class='Function'>LogFact</span></code> giving the factorial and its natural logarithm, possibly generalized to reals as the gamma function Ξ(1+π©), and <code><span class='Function'>Comb</span></code> giving the binomial function "<code><span class='Value'>π¨</span></code> choose <code><span class='Value'>π©</span></code>". Also the error function <code><span class='Function'>Erf</span></code> and its complement <code><span class='Function'>ErfC</span></code>. The implementations <code><span class='Function'>LogFact</span> <span class='Gets'>β</span> <span class='Function'>β</span><span class='Modifier'>βΌ</span><span class='Function'>Fact</span></code> and <code><span class='Function'>ErfC</span> <span class='Gets'>β</span> <span class='Number'>1</span><span class='Function'>-Erf</span></code> are mathematically correct but these two functions should support greater precision for a large argument.</p> <p>The greatest common divison <code><span class='Function'>GCD</span></code> and least common multiple <code><span class='Function'>LCM</span></code> of two numbers. Behavior for arguments other than natural numbers is not yet specified.</p> |
