diff options
Diffstat (limited to 'docs/transpose.html')
| -rw-r--r-- | docs/transpose.html | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/docs/transpose.html b/docs/transpose.html index 9267c167..eaedcdb0 100644 --- a/docs/transpose.html +++ b/docs/transpose.html @@ -2,7 +2,7 @@ <h1 id="transpose">Transpose</h1> <p>As in APL, Transpose (<code><span class='Function'>⍉</span></code>) is a tool for rearranging the axes of an array. BQN's version is tweaked to align better with the leading axis model and make common operations easier.</p> <h2 id="monadic-transpose">Monadic Transpose</h2> -<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Composition'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>×</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p> +<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Composition'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>×</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p> <p>BQN's transpose takes the first axis of its argument and moves it to the end.</p> <pre> <span class='Function'>≢</span> <span class='Value'>a23456</span> <span class='Gets'>←</span> <span class='Function'>↕</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>6</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span> @@ -11,7 +11,7 @@ </pre> <p>On the argument's ravel, this looks like a simple 2-dimensional transpose: one axis is exchanged with a compound axis made up of the other axes. Here we transpose a rank 3 matrix:</p> <pre> <span class='Value'>a322</span> <span class='Gets'>←</span> <span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>⥊↕</span><span class='Number'>12</span> - <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span> + <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span> @@ -26,7 +26,7 @@ <span class='Value'>┘</span> </pre> <p>But, reading in ravel order, the argument and result have exactly the same element ordering as for the rank 2 matrix <code><span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span></code>:</p> -<pre> <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span> +<pre> <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span> @@ -43,7 +43,7 @@ <span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span> </pre> <p>In fact, we have <code><span class='Function'>≢⍉</span><span class='Composition'>⍟</span><span class='Value'>k</span> <span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>k</span><span class='Function'>⌽≢</span><span class='Value'>a</span></code> for any number <code><span class='Value'>k</span></code> and array <code><span class='Value'>a</span></code>.</p> -<p>To move axes other than the first, use the Rank operator in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>></span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'><</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p> +<p>To move axes other than the first, use the Rank operator in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>></span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'><</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p> <pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Composition'>⎉</span><span class='Number'>3</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Number'>4</span> <span class='Value'>]</span> </pre> @@ -79,10 +79,10 @@ <pre> <span class='Function'>≢</span> <span class='Number'>2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes </span><span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span> </pre> -<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a "default" left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>.</p> +<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a "default" left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>.</p> <h2 id="definitions">Definitions</h2> <p>Here we define the two valences of Transpose more precisely.</p> <p>A non-array right argument to Transpose is always boxed to get a scalar array before doing anything else.</p> <p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p> -<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'><</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p> +<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'><</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p> |
