diff options
Diffstat (limited to 'docs/spec/system.html')
| -rw-r--r-- | docs/spec/system.html | 3 |
1 files changed, 2 insertions, 1 deletions
diff --git a/docs/spec/system.html b/docs/spec/system.html index 5e076378..9b43e094 100644 --- a/docs/spec/system.html +++ b/docs/spec/system.html @@ -601,9 +601,10 @@ <p>More accurately the modifier <code><span class='Modifier2'>•_maxTime_</span></code> <em>may</em> fail if execution of <code><span class='Function'>𝔽</span></code> takes over <code><span class='Value'>𝕨</span><span class='Function'>𝔾</span><span class='Value'>𝕩</span></code> seconds, and should fail as quickly as it is practically able to. The most likely way to implement this modifier is to interrupt execution at the given time. If <code><span class='Function'>𝔽</span></code> completes before the interrupt there is no need to measure the amount of time it actually took.</p> <h2 id="math"><a class="header" href="#math">Math</a></h2> <p>System namespace <code><span class='Value'>•math</span></code> contains mathematical utilities that are not easily implemented with basic arithmetic, analogous to C's <code><span class='Value'>math.h</span></code>.</p> -<p>Constants <code><span class='Value'>ln10</span><span class='Gets'>⇐</span><span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Number'>10</span></code>, <code><span class='Value'>ln2</span><span class='Gets'>⇐</span><span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Number'>2</span></code>, <code><span class='Value'>log10e</span><span class='Gets'>⇐</span><span class='Function'>÷⋆</span><span class='Modifier'>⁼</span><span class='Number'>10</span></code>, <code><span class='Value'>log2e</span><span class='Gets'>⇐</span><span class='Function'>÷⋆</span><span class='Modifier'>⁼</span><span class='Number'>2</span></code> computed in full precision.</p> <p>Other correctly-rounded arithmetic: monadic <code><span class='Function'>Cbrt</span><span class='Gets'>⇐</span><span class='Number'>3</span><span class='Modifier2'>⊸</span><span class='Function'>√</span></code>, <code><span class='Function'>Log2</span><span class='Gets'>⇐</span><span class='Number'>2</span><span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Function'>⊢</span></code>, <code><span class='Function'>Log10</span><span class='Gets'>⇐</span><span class='Number'>10</span><span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Function'>⊢</span></code>, <code><span class='Function'>Log1p</span><span class='Gets'>⇐</span><span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Number'>1</span><span class='Modifier2'>⊸</span><span class='Function'>+</span></code>, <code><span class='Function'>Expm1</span><span class='Gets'>⇐</span><span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>˜</span><span class='Function'>⋆</span></code>; dyadic <code><span class='Function'>Hypot</span><span class='Gets'>⇐</span><span class='Function'>+</span><span class='Modifier2'>⌾</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>)</span></code>.</p> <p>Standard trigonometric functions <code><span class='Function'>Sin</span></code>, <code><span class='Function'>Cos</span></code>, <code><span class='Function'>Tan</span></code>, <code><span class='Function'>Sinh</span></code>, <code><span class='Function'>Cosh</span></code>, <code><span class='Function'>Tanh</span></code>, with inverses preceded by <code><span class='Value'>a</span></code> (<code><span class='Function'>ASin</span></code>, etc.) and accessable with <code><span class='Modifier'>⁼</span></code>. Additionally, the dyadic function <code><span class='Function'>ATan2</span></code> giving the angle of vector <code><span class='Value'>𝕨</span><span class='Ligature'>‿</span><span class='Value'>𝕩</span></code> relative to <code><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>0</span></code>. All trig functions measure angles in radians.</p> +<p>Special functions <code><span class='Function'>Fact</span></code> and <code><span class='Function'>LogFact</span></code> giving the factorial and its natural logarithm, possibly generalized to reals as the gamma function Γ(1+𝕩), and <code><span class='Function'>Comb</span></code> giving the binomial function "<code><span class='Value'>𝕨</span></code> choose <code><span class='Value'>𝕩</span></code>". Also the error function <code><span class='Function'>Erf</span></code> and its complement <code><span class='Function'>ErfC</span></code>. The implementations <code><span class='Function'>LogFact</span> <span class='Gets'>←</span> <span class='Function'>⋆</span><span class='Modifier'>⁼</span><span class='Function'>Fact</span></code> and <code><span class='Function'>ErfC</span> <span class='Gets'>←</span> <span class='Number'>1</span><span class='Function'>-Erf</span></code> are mathematically correct but these two functions should support greater precision for a large argument.</p> +<p>The greatest common divison <code><span class='Function'>GCD</span></code> and least common multiple <code><span class='Function'>LCM</span></code> of two numbers. Behavior for arguments other than natural numbers is not yet specified.</p> <h2 id="random-generation"><a class="header" href="#random-generation">Random generation</a></h2> <p><code><span class='Function'>•MakeRand</span></code> initializes a deterministic pseudorandom number generator with seed value <code><span class='Value'>𝕩</span></code>. <code><span class='Value'>•rand</span></code>, if it exists, is a globally accessible generator initialized at first use; this initialization should use randomness from an outside source if available. These random generators aren't required to be cryptographically secure and should always be treated as insecure. A random generator has the following member functions:</p> <table> |
