aboutsummaryrefslogtreecommitdiff
path: root/docs/doc
diff options
context:
space:
mode:
Diffstat (limited to 'docs/doc')
-rw-r--r--docs/doc/based.html2
-rw-r--r--docs/doc/syntax.html4
2 files changed, 3 insertions, 3 deletions
diff --git a/docs/doc/based.html b/docs/doc/based.html
index 5a6513db..031c9572 100644
--- a/docs/doc/based.html
+++ b/docs/doc/based.html
@@ -42,7 +42,7 @@
<p>Arrays in BQN, like nearly all data structures in modern programming languages, are an <a href="https://en.wikipedia.org/wiki/Inductive_type">inductive type</a>. That means that an array can be constructed from existing values, but can't contain itself (including recursively: an array always has finite depth). To construct the type of all BQN values inductively, we would say that atoms form the base case, and arrays are an inductive case: an array is a shaped collection of existing BQN values. For an array programmer, this is of course the easy part.</p>
<h2 id="versus-the-nested-array-model">Versus the nested array model</h2>
<p>The <a href="https://aplwiki.com/wiki/Array_model#Nested_array_theory">nested array model</a> of NARS, APL2, Dyalog, and GNU APL can be constructed from the based model by adding a rule: a scalar array containing an atom is equivalent to that atom. The equivalents of atoms in nested array theory are thus called &quot;simple scalars&quot;, and they are considered arrays but share the same characteristics of BQN atoms. Nested arrays don't form an inductive type, because simple scalars contain themselves.</p>
-<p>Nested array theory can seem simpler to use, because the programmer never has to worry about simple scalars being enclosed the wrong number of times: all these encloses have been identified with each other. For example, <code>'<span class='Value'>abcd</span>'<span class='Value'>[</span><span class='Number'>2</span><span class='Value'>]</span></code> returns a character while BQN's <code><span class='Number'>2</span><span class='Function'>⊏</span><span class='String'>&quot;abcd&quot;</span></code> returns a scalar containing a character. However, these issues usually still appear with more complex arrays: <code>'<span class='Value'>ab</span>' <span class='Number'>1</span> '<span class='Value'>ef</span>'<span class='Value'>[</span><span class='Number'>2</span><span class='Value'>]</span></code> (here spaces are used for stranding) is not a string but an enclosed string!</p>
+<p>Nested array theory can seem simpler to use, because the programmer never has to worry about simple scalars being enclosed the wrong number of times: all these encloses have been identified with each other. For example, <code><span class='String'>'</span><span class='Value'>abcd</span><span class='String'>'</span><span class='Value'>[</span><span class='Number'>2</span><span class='Value'>]</span></code> returns a character while BQN's <code><span class='Number'>2</span><span class='Function'>⊏</span><span class='String'>&quot;abcd&quot;</span></code> returns a scalar containing a character. However, these issues usually still appear with more complex arrays: <code><span class='String'>'</span><span class='Value'>ab</span><span class='String'>'</span> <span class='Number'>1</span> <span class='String'>'</span><span class='Value'>ef</span><span class='String'>'</span><span class='Value'>[</span><span class='Number'>2</span><span class='Value'>]</span></code> (here spaces are used for stranding) is not a string but an enclosed string!</p>
<p>A property that might warn about dangerous issues like this is that nested array theory tends to create <em>inversions</em> where the depth of a particular array depends on its rank (reversing the normal hierarchy of depth→rank→shape). A 1-character string has depth 1, but when its rank is reduced to 0, its depth is reduced as well.</p>
<p>In some cases nested array theory can remove a depth issue entirely, and not just partially. Most notable is the <a href="../problems.html#search-function-depth">search function result depth</a> issue, in which it's impossible for a search function in BQN to return an atomic number because it always returns an array. Nested array theory doesn't have this issue since a scalar number is &quot;just a number&quot;, and more complicated arrays can't cause problems because a search function's result is always a numeric array. The other half of the problem, about the non-principal argument depth, is only partly hidden, and causes problems for example when searching for a single string out of a list of strings.</p>
<h2 id="versus-the-boxed-array-model">Versus the boxed array model</h2>
diff --git a/docs/doc/syntax.html b/docs/doc/syntax.html
index 42fe714a..aafb86d9 100644
--- a/docs/doc/syntax.html
+++ b/docs/doc/syntax.html
@@ -21,7 +21,7 @@
<td><a href="#comments">Comment</a></td>
</tr>
<tr>
-<td><code>'&quot;</code></td>
+<td><code><span class='String'>'&quot;</span></code></td>
<td><a href="#constants">Character or string literal</a></td>
</tr>
<tr>
@@ -102,7 +102,7 @@
<a class="replLink" title="Open in the REPL" target="_blank" href="https://mlochbaum.github.io/BQN/try.html#code=4p+oIMKvz4Ag4ouEIDAuNSDii4QgNWXCrzEg4ouEIDEuNUUzIOKLhCDiiJ4g4p+pICAgIyBBIGxpc3Qgb2YgbnVtYmVycw==&run">↗️</a><pre> <span class='Bracket'>⟨</span> <span class='Number'>¯π</span> <span class='Separator'>⋄</span> <span class='Number'>0.5</span> <span class='Separator'>⋄</span> <span class='Number'>5e¯1</span> <span class='Separator'>⋄</span> <span class='Number'>1.5E3</span> <span class='Separator'>⋄</span> <span class='Number'>∞</span> <span class='Bracket'>⟩</span> <span class='Comment'># A list of numbers
</span>⟨ ¯3.14159265358979 0.5 0.5 1500 ∞ ⟩
</pre>
-<p>Strings are written with double quotes <code><span class='String'>&quot;&quot;</span></code>, and characters with single quotes <code>''</code> with a single character in between. A double quote within a string can be escaped by writing it twice; if two string literals are next to each other, they must be separated by a space. In contrast, character literals do not use escapes, as the length is already known.</p>
+<p>Strings are written with double quotes <code><span class='String'>&quot;&quot;</span></code>, and characters with single quotes <code><span class='String'>''</span></code> with a single character in between. A double quote within a string can be escaped by writing it twice; if two string literals are next to each other, they must be separated by a space. In contrast, character literals do not use escapes, as the length is already known.</p>
<a class="replLink" title="Open in the REPL" target="_blank" href="https://mlochbaum.github.io/BQN/try.html#code=4omgwqgg4p+oICJzdHIiIOKLhCAicyd0IiJyIiDii4QgJ2MnIOKLhCAnJycg4ouEICciJyDin6kgICAjICIiIGlzIGFuIGVzY2FwZQoK4omhwqgg4p+oICJhIiDii4QgJ2EnIOKfqSAgICMgQSBzdHJpbmcgaXMgYW4gYXJyYXkgYnV0IGEgY2hhcmFjdGVyIGlzbid0&run">↗️</a><pre> <span class='Function'>≠</span><span class='Modifier'>¨</span> <span class='Bracket'>⟨</span> <span class='String'>&quot;str&quot;</span> <span class='Separator'>⋄</span> <span class='String'>&quot;s't&quot;&quot;r&quot;</span> <span class='Separator'>⋄</span> <span class='String'>'c'</span> <span class='Separator'>⋄</span> <span class='String'>'''</span> <span class='Separator'>⋄</span> <span class='String'>'&quot;'</span> <span class='Bracket'>⟩</span> <span class='Comment'># &quot;&quot; is an escape
</span>⟨ 3 5 1 1 1 ⟩