diff options
Diffstat (limited to 'docs/doc')
| -rw-r--r-- | docs/doc/context.html | 56 | ||||
| -rw-r--r-- | docs/doc/depth.html | 32 | ||||
| -rw-r--r-- | docs/doc/fromDyalog.html | 70 | ||||
| -rw-r--r-- | docs/doc/functional.html | 30 | ||||
| -rw-r--r-- | docs/doc/group.html | 46 | ||||
| -rw-r--r-- | docs/doc/index.html | 2 | ||||
| -rw-r--r-- | docs/doc/indices.html | 26 | ||||
| -rw-r--r-- | docs/doc/join.html | 6 | ||||
| -rw-r--r-- | docs/doc/logic.html | 8 | ||||
| -rw-r--r-- | docs/doc/transpose.html | 32 | ||||
| -rw-r--r-- | docs/doc/windows.html | 18 |
11 files changed, 163 insertions, 163 deletions
diff --git a/docs/doc/context.html b/docs/doc/context.html index 22fe5443..f511c1ef 100644 --- a/docs/doc/context.html +++ b/docs/doc/context.html @@ -10,12 +10,12 @@ <p>In each case, some values are used as inputs to functions while others are the functions being applied. The result of a function can be used either as an input or as a function again. These expressions correspond to the APL expression where <code><span class='Value'>a</span></code> and <code><span class='Value'>e</span></code> are arrays, <code><span class='Value'>b</span></code> and <code><span class='Value'>c</span></code> are functions, and <code><span class='Value'>d</span></code> is a monadic operator. However, these syntactic classes have to be known to see what the APL expression is doing—they are a form of context that is required for a reader to know the grammatical structure of the expression. In a context-free grammar like that of simple C or Lisp expressions, a value's grammatical role is part of the expression itself, indicated with parentheses: they come after the function in C and before it in Lisp. Of course, a consequence of using parentheses in this way is having a lot of parentheses. BQN uses a different method to annotate grammatical role:</p> <pre><span class='Value'>a</span> <span class='Function'>B</span> <span class='Function'>C</span> <span class='Modifier'>_d</span> <span class='Value'>e</span> </pre> -<p>Here, the lowercase spelling indicates that <code><span class='Value'>a</span></code> and <code><span class='Value'>e</span></code> are to be treated as values ("arrays" in APL) while the uppercase spelling of variables <code><span class='Function'>B</span></code> and <code><span class='Function'>C</span></code> are used as functions and <code><span class='Modifier'>_d</span></code> is a modifier ("monadic operator"). Like parentheses for function application, the spelling is not inherent to the variable values used, but instead indicates their grammatical role in this particular expression. A variable has no inherent spelling and can be used in any role, so the names <code><span class='Value'>a</span></code>, <code><span class='Function'>A</span></code>, <code><span class='Modifier'>_a</span></code>, and <code><span class='Composition'>_a_</span></code> all refer to exact same variable, but in different roles; typically we use the lowercase name to refer to the variable in isolation. While we still don't know anything about what values <code><span class='Value'>a</span></code>, <code><span class='Value'>b</span></code>, <code><span class='Value'>c</span></code>, and so on have, we know how they interact in the line of code above.</p> +<p>Here, the lowercase spelling indicates that <code><span class='Value'>a</span></code> and <code><span class='Value'>e</span></code> are to be treated as subjects ("arrays" in APL) while the uppercase spelling of variables <code><span class='Function'>B</span></code> and <code><span class='Function'>C</span></code> are used as functions and <code><span class='Modifier'>_d</span></code> is a 1-modifier ("monadic operator"). Like parentheses for function application, the spelling is not inherent to the variable values used, but instead indicates their grammatical role in this particular expression. A variable has no inherent spelling and can be used in any role, so the names <code><span class='Value'>a</span></code>, <code><span class='Function'>A</span></code>, <code><span class='Modifier'>_a</span></code>, and <code><span class='Modifier2'>_a_</span></code> all refer to exact same variable, but in different roles; typically we use the lowercase name to refer to the variable in isolation—all values are nouns when speaking about them in English. While we still don't know anything about what values <code><span class='Value'>a</span></code>, <code><span class='Value'>b</span></code>, <code><span class='Value'>c</span></code>, and so on have, we know how they interact in the line of code above.</p> <h2 id="is-grammatical-context-really-a-problem-">Is grammatical context really a problem?</h2> <p>Yes, in the sense of <a href="../problems.html">problems with BQN</a>. A grammar that uses context is harder for humans to read and machines to execute. A particular difficulty is that parts of an expression you don't yet understand can interfere with parts you do, making it difficult to work through an unknown codebase.</p> -<p>One difficulty beginners to APL will encounter is that code in APL at first appears like a string of undifferentiated symbols. For example, a tacit Unique Mask implementation <code><span class='Value'>⍳⍨</span><span class='Function'>=</span><span class='Value'>⍳</span><span class='Composition'>∘</span><span class='Function'>≢</span></code> consists of six largely unfamiliar characters with little to distinguish them (in fact, the one obvious bit of structure, the repeated <code><span class='Value'>⍳</span></code>, is misleading as it means different things in each case!). Simply placing parentheses into the expression, like <code><span class='Paren'>(</span><span class='Value'>⍳⍨</span><span class='Paren'>)</span><span class='Function'>=</span><span class='Paren'>(</span><span class='Value'>⍳</span><span class='Composition'>∘</span><span class='Function'>≢</span><span class='Paren'>)</span></code>, can be a great help to a beginner, and part of learning APL is to naturally see where the parentheses should go. The equivalent BQN expression, <code><span class='Function'>⊐</span><span class='Modifier'>˜</span><span class='Function'>=↕</span><span class='Composition'>∘</span><span class='Function'>≠</span></code>, will likely appear equally intimidating at first, but the path to learning which things apply to which is much shorter: rather than learning the entire list of APL primitives, a beginner just needs to know that superscript characters like <code><span class='Modifier'>˜</span></code> are modifiers and characters like <code><span class='Composition'>∘</span></code> with unbroken circles are compositions before beginning to learn the BQN grammar that will explain how to tie the various parts together.</p> +<p>One difficulty beginners to APL will encounter is that code in APL at first appears like a string of undifferentiated symbols. For example, a tacit Unique Mask implementation <code><span class='Value'>⍳⍨</span><span class='Function'>=</span><span class='Value'>⍳</span><span class='Modifier2'>∘</span><span class='Function'>≢</span></code> consists of six largely unfamiliar characters with little to distinguish them (in fact, the one obvious bit of structure, the repeated <code><span class='Value'>⍳</span></code>, is misleading as it means different things in each case!). Simply placing parentheses into the expression, like <code><span class='Paren'>(</span><span class='Value'>⍳⍨</span><span class='Paren'>)</span><span class='Function'>=</span><span class='Paren'>(</span><span class='Value'>⍳</span><span class='Modifier2'>∘</span><span class='Function'>≢</span><span class='Paren'>)</span></code>, can be a great help to a beginner, and part of learning APL is to naturally see where the parentheses should go. The equivalent BQN expression, <code><span class='Function'>⊐</span><span class='Modifier'>˜</span><span class='Function'>=↕</span><span class='Modifier2'>∘</span><span class='Function'>≠</span></code>, will likely appear equally intimidating at first, but the path to learning which things apply to which is much shorter: rather than learning the entire list of APL primitives, a beginner just needs to know that superscript characters like <code><span class='Modifier'>˜</span></code> are 1-modifiers and characters like <code><span class='Modifier2'>∘</span></code> with unbroken circles are 2-modifiers before beginning to learn the BQN grammar that will explain how to tie the various parts together.</p> <p>This sounds like a distant concern to a master of APL or a computer that has no difficulty memorizing a few dozen glyphs. Quite the opposite: the same concern applies to variables whenever you begin work with an unfamiliar codebase! Many APL programmers even enforce variable name conventions to ensure they know the class of a variable. By having such a system built in, BQN keeps you from having to rely on programmers following a style guide, and also allows greater flexibility, including <a href="functional.html">functional programming</a>, as we'll see later.</p> -<p>Shouldn't a codebase define all the variables it uses, so we can see their class from the definition? Not always: consider that in a language with libraries, code might be imported from dependencies. Many APLs also have some dynamic features that can allow a variable to have more than one class, such as the <code><span class='Value'>⍺</span><span class='Gets'>←</span><span class='Function'>⊢</span></code> pattern in a dfn that makes <code><span class='Value'>⍺</span></code> an array in the dyadic case but a function in the monadic case. Regardless, searching for a definition somewhere in the code is certainly a lot more work than knowing the class right away! One final difficulty is that even one unknown can delay understanding of an entire expression. Suppose in <code><span class='Function'>A</span> <span class='Function'>B</span> <span class='Value'>c</span></code>, <code><span class='Function'>B</span></code> is a function and <code><span class='Value'>c</span></code> is an array, and both values are known to be constant. If <code><span class='Function'>A</span></code> is known to be a function (even if its value is not yet known), its right argument <code><span class='Function'>B</span> <span class='Value'>c</span></code> can be evaluated ahead of time. But if <code><span class='Function'>A</span></code>'s type isn't known, it's impossible to know if this optimization is worth it, because if it is an array, <code><span class='Function'>B</span></code> will instead be called dyadically.</p> +<p>Shouldn't a codebase define all the variables it uses, so we can see their class from the definition? Not always: consider that in a language with libraries, code might be imported from dependencies. Many APLs also have some dynamic features that can allow a variable to have more than one class, such as the <code><span class='Value'>⍺</span><span class='Gets'>←</span><span class='Function'>⊢</span></code> pattern in a dfn that makes <code><span class='Value'>⍺</span></code> an array in the dyadic case but a function in the monadic case. Regardless, searching for a definition somewhere in the code is certainly a lot more work than knowing the class just from looking! One final difficulty is that even one unknown can delay understanding of an entire expression. Suppose in <code><span class='Function'>A</span> <span class='Function'>B</span> <span class='Value'>c</span></code>, <code><span class='Function'>B</span></code> is a function and <code><span class='Value'>c</span></code> is an array, and both values are known to be constant. If <code><span class='Function'>A</span></code> is known to be a function (even if its value is not yet known), its right argument <code><span class='Function'>B</span> <span class='Value'>c</span></code> can be evaluated ahead of time. But if <code><span class='Function'>A</span></code>'s type isn't known, it's impossible to know if this optimization is worth it, because if it is an array, <code><span class='Function'>B</span></code> will instead be called dyadically.</p> <h2 id="bqn-s-spelling-system">BQN's spelling system</h2> <p>BQN's expression grammar is a simplified version of the typical APL, removing some oddities like niladic functions and the two-glyph Outer Product operator. Every value can be used in any of four syntactic roles:</p> <table> @@ -28,7 +28,7 @@ </thead> <tbody> <tr> -<td>Value</td> +<td>Subject</td> <td>Array</td> <td>Noun</td> </tr> @@ -38,24 +38,24 @@ <td>Verb</td> </tr> <tr> -<td>Modifier</td> +<td>1-modifier</td> <td>Monadic operator</td> <td>Adverb</td> </tr> <tr> -<td>Composition</td> +<td>2-modifier</td> <td>Dyadic operator</td> <td>Conjunction</td> </tr> </tbody> </table> -<p>Unlike variables, BQN primitives have only one spelling, and a fixed role (but their values can be used in a different role by storing them in variables). Superscript glyphs <code><span class='Modifier'>˜¨˘⁼⌜´`</span></code> are used for modifiers, and glyphs <code><span class='Composition'>∘○⊸⟜⌾⊘◶⚇⎉⍟</span></code> with an unbroken circle are compositions. Other primitives are functions. String and numeric literals are values.</p> -<p>BQN's variables use another system, where the spelling indicates how the variable's value is used. A variable spelled with a lowercase first letter, like <code><span class='Value'>var</span></code>, is a value. Spelled with an uppercase first letter, like <code><span class='Function'>Var</span></code>, it is a function. Underscores are placed where operands apply to indicate a modifier <code><span class='Modifier'>_var</span></code> or composition <code><span class='Composition'>_var_</span></code>. Other than the first letter or underscore, variables are case-insensitive.</p> +<p>Unlike variables, BQN primitives have only one spelling, and a fixed role (but their values can be used in a different role by storing them in variables). Superscript glyphs <code><span class='Modifier'>˜¨˘⁼⌜´`</span></code> are used for 1-modifiers, and glyphs <code><span class='Modifier2'>∘○⊸⟜⌾⊘◶⚇⎉⍟</span></code> with an unbroken circle are 2-modifiers. Other primitives are functions. String and numeric literals are subjects.</p> +<p>BQN's variables use another system, where the spelling indicates how the variable's value is used. A variable spelled with a lowercase first letter, like <code><span class='Value'>var</span></code>, is a subject. Spelled with an uppercase first letter, like <code><span class='Function'>Var</span></code>, it is a function. Underscores are placed where operands apply to indicate a 1-modifier <code><span class='Modifier'>_var</span></code> or 2-modifier <code><span class='Modifier2'>_var_</span></code>. Other than the first letter or underscore, variables are case-insensitive.</p> <p>The associations between spelling and syntactic role are considered part of BQN's <a href="../spec/token.html">token formation rules</a>.</p> -<p>One rule for typing is also best considered to be a pre-parsing rule like the spelling system: the role of a brace construct <code><span class='Brace'>{}</span></code> with no header is determined by which special arguments it uses: it's a value if there are none, but a <code><span class='Value'>𝕨</span></code> or <code><span class='Value'>𝕩</span></code> makes it at least a function, an <code><span class='Function'>𝔽</span></code> makes it a modifier or composition, and a <code><span class='Function'>𝔾</span></code> always makes it a composition.</p> +<p>One rule for typing is also best considered to be a pre-parsing rule like the spelling system: the role of a brace construct <code><span class='Brace'>{}</span></code> with no header is determined by which special arguments it uses: it's a subject if there are none, but a <code><span class='Value'>𝕨</span></code> or <code><span class='Value'>𝕩</span></code> makes it at least a function, an <code><span class='Function'>𝔽</span></code> makes it a 1- or 2-modifier, and a <code><span class='Function'>𝔾</span></code> always makes it a 2-modifier.</p> <h2 id="bqn-s-grammar">BQN's grammar</h2> <p>A formal treatment is included in <a href="../spec/grammar.html">the spec</a>. BQN's grammar—the ways syntactic roles interact—follows the original APL model (plus trains) closely, with allowances for new features like list notation. In order to keep BQN's syntax context-free, the syntactic role of any expression must be known from its contents, just like tokens.</p> -<p>Here is a table of the APL-derived operator and function application rules:</p> +<p>Here is a table of the APL-derived modifier and function application rules:</p> <table> <thead> <tr> @@ -71,14 +71,14 @@ <td></td> <td><code><span class='Function'>F</span></code></td> <td><code><span class='Value'>x</span></code></td> -<td>Value</td> +<td>Subject</td> <td>Monadic function</td> </tr> <tr> <td><code><span class='Value'>w</span></code></td> <td><code><span class='Function'>F</span></code></td> <td><code><span class='Value'>x</span></code></td> -<td>Value</td> +<td>Subject</td> <td>Dyadic function</td> </tr> <tr> @@ -100,39 +100,39 @@ <td><code><span class='Modifier'>_m</span></code></td> <td></td> <td>Function</td> -<td>Modifier</td> +<td>1-Modifier</td> </tr> <tr> <td><code><span class='Function'>F</span><span class='Value'>*</span></code></td> -<td><code><span class='Composition'>_c_</span></code></td> +<td><code><span class='Modifier2'>_c_</span></code></td> <td><code><span class='Function'>G</span><span class='Value'>*</span></code></td> <td>Function</td> -<td>Composition</td> +<td>2-Modifier</td> </tr> <tr> <td></td> -<td><code><span class='Composition'>_c_</span></code></td> +<td><code><span class='Modifier2'>_c_</span></code></td> <td><code><span class='Function'>G</span><span class='Value'>*</span></code></td> -<td>Modifier</td> +<td>1-Modifier</td> <td>Partial application</td> </tr> <tr> <td><code><span class='Function'>F</span><span class='Value'>*</span></code></td> -<td><code><span class='Composition'>_c_</span></code></td> +<td><code><span class='Modifier2'>_c_</span></code></td> <td></td> -<td>Modifier</td> +<td>1-Modifier</td> <td>Partial application</td> </tr> </tbody> </table> -<p>A function with an asterisk indicates that a value can also be used: in these positions there is no difference between function and value spellings. Operator applications bind more tightly than functions, and associate left-to-right while functions associate right-to-left.</p> -<p>BQN lists can be written with angle brackets <code><span class='Bracket'>⟨</span><span class='Value'>elt0</span><span class='Separator'>,</span><span class='Value'>elt1</span><span class='Separator'>,</span><span class='Value'>…</span><span class='Bracket'>⟩</span></code> or ligatures <code><span class='Value'>elt0</span><span class='Ligature'>‿</span><span class='Value'>elt1</span><span class='Ligature'>‿</span><span class='Value'>…</span></code>. In either case the elements can have any type, and the result is a value.</p> -<p>The statements in a brace block, function, or operator can also be any role, including the return value at the end. These roles have no effect: outside of braces, a function always returns an array, a modifier always returns a function, and so on, regardless of how these objects were defined.</p> +<p>A function with an asterisk indicates that a subject can also be used: in these positions there is no difference between function and subject spellings. Modifier applications bind more tightly than functions, and associate left-to-right while functions associate right-to-left.</p> +<p>BQN lists can be written with angle brackets <code><span class='Bracket'>⟨</span><span class='Value'>elt0</span><span class='Separator'>,</span><span class='Value'>elt1</span><span class='Separator'>,</span><span class='Value'>…</span><span class='Bracket'>⟩</span></code> or ligatures <code><span class='Value'>elt0</span><span class='Ligature'>‿</span><span class='Value'>elt1</span><span class='Ligature'>‿</span><span class='Value'>…</span></code>. In either case the elements can have any type, and the result is a subject.</p> +<p>The statements in a block can also be any role, including the return value at the end. These roles have no effect: outside of braces, an immediate block is a subject, a function always returns a subject, and a modifier always returns a function, regardless of how these objects were defined.</p> <h2 id="mixing-roles">Mixing roles</h2> -<p>BQN's basic types align closely with its syntactic roles: functions, modifiers, and compositions are all basic types, while values are split into numbers, characters, and arrays. This is no accident, and usually values will be used in roles that match their underlying type. However, the ability to use a role that doesn't match the type is very useful.</p> -<p>Any type can be passed as an argument to a function, or as an operand, by treating it as a value. This means that BQN fully supports Lisp-style <a href="functional.html">functional programming</a>, where functions can be used as values.</p> -<p>It can also be useful to treat a value type as a function, in which case it applies as a constant function. This rule is useful with most built-in operators. For example, <code><span class='Function'>F</span><span class='Composition'>⎉</span><span class='Number'>1</span></code> uses a constant for the rank even though in general a function can be given, and <code><span class='Value'>a</span><span class='Composition'>⌾</span><span class='Paren'>(</span><span class='Value'>b</span><span class='Composition'>⊸</span><span class='Function'>/</span><span class='Paren'>)</span></code> inserts the values in <code><span class='Value'>a</span></code> into the positions selected by <code><span class='Value'>b</span></code>, ignoring the old values rather than applying a function to them.</p> -<p>Other mixes of roles are generally not useful. While a combination such as treating a function as a modifier is allowed, attempting to apply it to an operand will fail. Only a modifier can be applied as a modifier and only a composition can be applied as a composition. Only a function or value can be applied as a function.</p> -<p>It's also worth noting that something that appears to be a value may actually be a function! For example, the result of <code><span class='Value'>𝕨</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code> may not always be <code><span class='Value'>𝕨</span></code>. <code><span class='Value'>𝕨</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code> is exactly identical to <code><span class='Function'>𝕎</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code>, which gives <code><span class='Value'>𝕩</span><span class='Function'>𝕎</span><span class='Value'>𝕩</span></code>. If <code><span class='Function'>𝕎</span></code> is a number, character, or array, that's the same as <code><span class='Value'>𝕨</span></code>, but if it is a function, then it will be applied.</p> -<p>The primary way to change the role of a value in BQN is to use a name, including one of the arguments to a brace function. In particular, you can use <code><span class='Brace'>{</span><span class='Function'>𝔽</span><span class='Brace'>}</span></code> to convert a value operand into a function. Converting a function to a value is more difficult. Often an array of functions is wanted, in which case they can be stranded together; otherwise it's probably best to give the function a name. Picking a function out of a list, for example <code><span class='Function'>⊑</span><span class='Bracket'>⟨</span><span class='Function'>+</span><span class='Bracket'>⟩</span></code> will give it as a value.</p> +<p>BQN's value types align closely with its syntactic roles: functions, 1-modifiers, and 2-modifiers are all types (<em>operation</em> types) as well as roles, while the other types (<em>data</em> types) are split into numbers, characters, and arrays. This is no accident, and usually values will be used in roles that correspond to their underlying type. However, the ability to use a role that doesn't match the type is also useful.</p> +<p>Any type can be passed as an argument to a function, or as an operand, by treating it as a subject. This means that BQN fully supports Lisp-style <a href="functional.html">functional programming</a>, where functions can be used as first-class entities.</p> +<p>It can also be useful to treat a value of a data type as a function, in which case it applies as a constant function. This rule is useful with most built-in modifiers. For example, <code><span class='Function'>F</span><span class='Modifier2'>⎉</span><span class='Number'>1</span></code> uses a constant for the rank even though in general a function can be given, and if <code><span class='Value'>a</span></code> is an array then <code><span class='Value'>a</span><span class='Modifier2'>⌾</span><span class='Paren'>(</span><span class='Value'>b</span><span class='Modifier2'>⊸</span><span class='Function'>/</span><span class='Paren'>)</span></code> inserts the values in <code><span class='Value'>a</span></code> into the positions selected by <code><span class='Value'>b</span></code>, ignoring the old values rather than applying a function to them.</p> +<p>Other mixes of roles are generally not useful. While a combination such as treating a function as a modifier is allowed, attempting to apply it to an operand will fail. Only a 1-modifier can be applied as a 1-modifier and only a 2-modifier can be applied as a 2-modifier. Only a function or data can be applied as a function.</p> +<p>It's also worth noting that a subject may unexpectedly be a function! For example, the result of <code><span class='Value'>𝕨</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code> may not always be <code><span class='Value'>𝕨</span></code>. <code><span class='Value'>𝕨</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code> is exactly identical to <code><span class='Function'>𝕎</span><span class='Modifier'>˜</span><span class='Value'>𝕩</span></code>, which gives <code><span class='Value'>𝕩</span><span class='Function'>𝕎</span><span class='Value'>𝕩</span></code>. If <code><span class='Function'>𝕎</span></code> is a number, character, or array, that's the same as <code><span class='Value'>𝕨</span></code>, but if it is a function, then it will be applied.</p> +<p>The primary way to change the role of a value in BQN is to use a name, including one of the special names for inputs to a brace function or modifier. In particular, you can use <code><span class='Brace'>{</span><span class='Function'>𝔽</span><span class='Brace'>}</span></code> to convert a subject operand into a function. Converting a function to a subject is more difficult. Often an array of functions is wanted, in which case they can be stranded together; otherwise it's probably best to give the function a name. Picking a function out of a list, for example <code><span class='Function'>⊑</span><span class='Bracket'>⟨</span><span class='Function'>+</span><span class='Bracket'>⟩</span></code>, will give it as a subject.</p> diff --git a/docs/doc/depth.html b/docs/doc/depth.html index 9becdb67..c99a75e4 100644 --- a/docs/doc/depth.html +++ b/docs/doc/depth.html @@ -1,6 +1,6 @@ <head><link href="../style.css" rel="stylesheet"/></head> <h1 id="depth">Depth</h1> -<p>The depth of an array is the greatest level of array nesting it attains, or, put another way, the greatest number of times you can pick an element starting from the original array before reaching a non-array. The monadic function Depth (<code><span class='Function'>≡</span></code>) returns the depth of its argument, while the composition Depth (<code><span class='Composition'>⚇</span></code>) can control the way its left operand is applied based on the depth of its arguments. Several primitive functions also use the depth of the left argument to decide whether it applies to a single axis of the right argument or to several axes.</p> +<p>The depth of an array is the greatest level of array nesting it attains, or, put another way, the greatest number of times you can pick an element starting from the original array before reaching a non-array. The monadic function Depth (<code><span class='Function'>≡</span></code>) returns the depth of its argument, while the 2-modifier Depth (<code><span class='Modifier2'>⚇</span></code>) can control the way its left operand is applied based on the depth of its arguments. Several primitive functions also use the depth of the left argument to decide whether it applies to a single axis of the right argument or to several axes.</p> <h2 id="the-depth-function">The Depth function</h2> <p>To find the depth of an array, use Depth (<code><span class='Function'>≡</span></code>). For example, the depth of a list of numbers or characters is 1:</p> <pre> <span class='Function'>≡</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span> @@ -8,7 +8,7 @@ <span class='Function'>≡</span> <span class='String'>"a string is a list of characters"</span> <span class='Number'>1</span> </pre> -<p>Depth is somewhat analogous to an array's rank <code><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>, and in fact rank can be "converted" to depth by splitting rows with <code><span class='Function'><</span><span class='Composition'>⎉</span><span class='Number'>1</span></code>, reducing the rank by 1 and increasing the depth. Unlike rank, Depth doesn't care at all about its argument's shape:</p> +<p>Depth is somewhat analogous to an array's rank <code><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>, and in fact rank can be "converted" to depth by splitting rows with <code><span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Number'>1</span></code>, reducing the rank by 1 and increasing the depth. Unlike rank, Depth doesn't care at all about its argument's shape:</p> <pre> <span class='Function'>≡</span> <span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Function'>⥊</span><span class='String'>"characters"</span> <span class='Number'>1</span> <span class='Function'>≡</span> <span class='Paren'>(</span><span class='Number'>1</span><span class='Function'>+↕</span><span class='Number'>10</span><span class='Paren'>)</span><span class='Function'>⥊</span><span class='String'>"characters"</span> @@ -22,7 +22,7 @@ <span class='Function'>≡</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Function'><</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Separator'>,</span><span class='Function'><<<</span><span class='Number'>5</span><span class='Bracket'>⟩</span> <span class='Number'>4</span> </pre> -<p>As the above expressions suggest, the depth of an array is the maximum of its elements, plus one. The base case, a non-array (including a function, modifier, or combinator), has depth 0.</p> +<p>As the above expressions suggest, the depth of an array is the maximum of its elements' depths, plus one. The base case, a non-array (including a function or modifier), has depth 0.</p> <pre> <span class='Function'>≡</span><span class='String'>'c'</span> <span class='Number'>0</span> <span class='Function'>F</span><span class='Gets'>←</span><span class='Function'>+</span><span class='Separator'>⋄</span><span class='Function'>≡</span><span class='Value'>f</span> @@ -32,8 +32,8 @@ <span class='Function'>≡</span><span class='Bracket'>⟨</span><span class='Number'>5</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='String'>'c'</span><span class='Separator'>,</span><span class='Value'>f</span><span class='Separator'>,</span><span class='Number'>2</span><span class='Bracket'>⟩⟩</span> <span class='Number'>2</span> </pre> -<p>If the function <code><span class='Function'>IsArray</span></code> indicates whether its argument is an array, then we can write a recursive definition of Depth using the Choose composition.</p> -<pre><span class='Function'>Depth</span><span class='Gets'>←</span><span class='Function'>IsArray</span><span class='Composition'>◶</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Brace'>{</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>0</span><span class='Function'>⌈</span><span class='Modifier'>´</span><span class='Function'>Depth</span><span class='Modifier'>¨</span><span class='Function'>⥊</span><span class='Value'>𝕩</span><span class='Brace'>}</span> +<p>If the function <code><span class='Function'>IsArray</span></code> indicates whether its argument is an array, then we can write a recursive definition of Depth using the Choose modifier.</p> +<pre><span class='Function'>Depth</span><span class='Gets'>←</span><span class='Function'>IsArray</span><span class='Modifier2'>◶</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Brace'>{</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>0</span><span class='Function'>⌈</span><span class='Modifier'>´</span><span class='Function'>Depth</span><span class='Modifier'>¨</span><span class='Function'>⥊</span><span class='Value'>𝕩</span><span class='Brace'>}</span> </pre> <p>The minimum element depth of 0 implies that an empty array's depth is 1.</p> <pre> <span class='Function'>≡</span><span class='Bracket'>⟨⟩</span> @@ -74,22 +74,22 @@ <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>4</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>┘</span> </pre> -<p>This means the left argument is homogeneous of depth 2. What should an argument of depth 1, or an argument that contains non-arrays, do? One option is to continue to require the left argument to be a vector, and convert any non-array argument into an array by boxing it:</p> -<pre> <span class='Bracket'>⟨</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Bracket'>⟩</span> <span class='Function'><</span><span class='Composition'>⍟</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'>=≡</span><span class='Paren'>)</span><span class='Modifier'>¨</span><span class='Composition'>⊸</span><span class='Function'>⊏</span> <span class='Function'>↕</span><span class='Number'>6</span><span class='Ligature'>‿</span><span class='Number'>7</span> +<p>This means the left argument is homogeneous of depth 2. What should an argument of depth 1, or an argument that contains non-arrays, do? One option is to continue to require the left argument to be a list, and convert any non-array argument into an array by enclosing it:</p> +<pre> <span class='Bracket'>⟨</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Bracket'>⟩</span> <span class='Function'><</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'>=≡</span><span class='Paren'>)</span><span class='Modifier'>¨</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span> <span class='Function'>↕</span><span class='Number'>6</span><span class='Ligature'>‿</span><span class='Number'>7</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> <p>While very consistent, this extension represents a small convenience and makes it difficult to act on a single axis, which for Replicate and <a href="group.html">Group</a> is probably the most common way the primitive is used:</p> <pre> <span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span> <span class='Function'>/</span> <span class='String'>"abcde"</span> <span class='Value'>[</span> <span class='Value'>aaabbcddeee</span> <span class='Value'>]</span> </pre> -<p>With the extension above, every case like this would have to use <code><span class='Function'><</span><span class='Composition'>⊸</span><span class='Function'>/</span></code> instead of just <code><span class='Function'>/</span></code>. BQN avoids this difficulty by testing the left argument's depth. A depth-1 argument applies to the first axis only, giving the behavior above.</p> +<p>With the extension above, every case like this would have to use <code><span class='Function'><</span><span class='Modifier2'>⊸</span><span class='Function'>/</span></code> instead of just <code><span class='Function'>/</span></code>. BQN avoids this difficulty by testing the left argument's depth. A depth-1 argument applies to the first axis only, giving the behavior above.</p> <p>For Select, the depth-1 case is still quite useful, but it may also be desirable to choose a single cell using a list of numbers. In this case the left argument depth can be increased from the bottom using <code><span class='Function'><</span><span class='Modifier'>¨</span></code>.</p> -<pre> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>4</span> <span class='Function'><</span><span class='Modifier'>¨</span><span class='Composition'>⊸</span><span class='Function'>⊏</span> <span class='Function'>↕</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>2</span> +<pre> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>4</span> <span class='Function'><</span><span class='Modifier'>¨</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span> <span class='Function'>↕</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>2</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Number'>4</span> <span class='Number'>0</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Number'>4</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> -<h2 id="the-depth-composition">The Depth composition</h2> -<p>The Depth composition (<code><span class='Composition'>⚇</span></code>) is a generalization of Each that allows diving deeper into an array. To illustrate it we'll use a shape <code><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>3</span></code> array of lists of lists.</p> -<pre> <span class='Function'>⊢</span> <span class='Value'>n</span> <span class='Gets'>←</span> <span class='Function'><</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Composition'>⍟</span><span class='Number'>2</span> <span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>⥊↕</span><span class='Number'>48</span> +<h2 id="the-depth-modifier">The Depth modifier</h2> +<p>The Depth 2-modifier (<code><span class='Modifier2'>⚇</span></code>) is a generalization of Each that allows diving deeper into an array. To illustrate it we'll use a shape <code><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>3</span></code> array of lists of lists.</p> +<pre> <span class='Function'>⊢</span> <span class='Value'>n</span> <span class='Gets'>←</span> <span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Number'>1</span><span class='Modifier2'>⍟</span><span class='Number'>2</span> <span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>⥊↕</span><span class='Number'>48</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>7</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>8</span> <span class='Number'>9</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>10</span> <span class='Number'>11</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>12</span> <span class='Number'>13</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>14</span> <span class='Number'>15</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>16</span> <span class='Number'>17</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>18</span> <span class='Number'>19</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>20</span> <span class='Number'>21</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>22</span> <span class='Number'>23</span> <span class='Value'>]</span> <span class='Value'>]</span> @@ -109,14 +109,14 @@ <span class='Value'>┘</span> </pre> <p>Depth <code><span class='Number'>¯1</span></code> is equivalent to Each, and reverses the larger vectors, while depth <code><span class='Number'>¯2</span></code> applies Each twice to reverse the smaller vectors:</p> -<pre> <span class='Function'>⌽</span><span class='Composition'>⚇</span><span class='Number'>¯1</span> <span class='Value'>n</span> +<pre> <span class='Function'>⌽</span><span class='Modifier2'>⚇</span><span class='Number'>¯1</span> <span class='Value'>n</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>7</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>10</span> <span class='Number'>11</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>8</span> <span class='Number'>9</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>14</span> <span class='Number'>15</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>12</span> <span class='Number'>13</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>18</span> <span class='Number'>19</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>16</span> <span class='Number'>17</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>22</span> <span class='Number'>23</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>20</span> <span class='Number'>21</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>26</span> <span class='Number'>27</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>24</span> <span class='Number'>25</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>30</span> <span class='Number'>31</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>28</span> <span class='Number'>29</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>34</span> <span class='Number'>35</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>32</span> <span class='Number'>33</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>38</span> <span class='Number'>39</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>36</span> <span class='Number'>37</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>42</span> <span class='Number'>43</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>40</span> <span class='Number'>41</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>46</span> <span class='Number'>47</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>44</span> <span class='Number'>45</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>┘</span> - <span class='Function'>⌽</span><span class='Composition'>⚇</span><span class='Number'>¯2</span> <span class='Value'>n</span> + <span class='Function'>⌽</span><span class='Modifier2'>⚇</span><span class='Number'>¯2</span> <span class='Value'>n</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>2</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>5</span> <span class='Number'>4</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>7</span> <span class='Number'>6</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>9</span> <span class='Number'>8</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>11</span> <span class='Number'>10</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>13</span> <span class='Number'>12</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>15</span> <span class='Number'>14</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>17</span> <span class='Number'>16</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>19</span> <span class='Number'>18</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Number'>21</span> <span class='Number'>20</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>23</span> <span class='Number'>22</span> <span class='Value'>]</span> <span class='Value'>]</span> @@ -125,11 +125,11 @@ <span class='Value'>┘</span> </pre> <p>While a negative depth tells how many levels to go down, a non-negative depth gives the maximum depth of the argument before applying the left operand. On a depth-3 array like above, depth <code><span class='Number'>2</span></code> is equivalent to <code><span class='Number'>¯1</span></code> and depth <code><span class='Number'>1</span></code> is equivalent to <code><span class='Number'>¯2</span></code>. A depth of <code><span class='Number'>0</span></code> means to loop until non-arrays are reached, that is, apply <a href="https://aplwiki.com/wiki/Pervasion">pervasively</a>, like a scalar function.</p> -<pre> <span class='Bracket'>⟨</span><span class='String'>'a'</span><span class='Separator'>,</span><span class='String'>"bc"</span><span class='Bracket'>⟩</span> <span class='Function'>≍</span><span class='Composition'>⚇</span><span class='Number'>0</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Bracket'>⟩</span> +<pre> <span class='Bracket'>⟨</span><span class='String'>'a'</span><span class='Separator'>,</span><span class='String'>"bc"</span><span class='Bracket'>⟩</span> <span class='Function'>≍</span><span class='Modifier2'>⚇</span><span class='Number'>0</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Bracket'>⟩</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Number'>2</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Number'>3</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>b</span> <span class='Number'>4</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>c</span> <span class='Number'>4</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> <p>With a positive operand, Depth doesn't have to use the same depth everywhere. Here, Length is applied as soon as the depth for a particular element is 1 or less, including if the argument has depth 0. For example, it maps over <code><span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Bracket'>⟩⟩</span></code>, but not over <code><span class='Bracket'>⟨</span><span class='Number'>11</span><span class='Separator'>,</span><span class='Number'>12</span><span class='Bracket'>⟩</span></code>, even though these are elements of the same array.</p> -<pre> <span class='Function'>≠</span><span class='Composition'>⚇</span><span class='Number'>1</span> <span class='Bracket'>⟨</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Bracket'>⟩⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>5</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>7</span><span class='Bracket'>⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>8</span><span class='Separator'>,</span><span class='Number'>9</span><span class='Separator'>,</span><span class='Number'>10</span><span class='Bracket'>⟩⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>11</span><span class='Separator'>,</span><span class='Number'>12</span><span class='Bracket'>⟩⟩</span> +<pre> <span class='Function'>≠</span><span class='Modifier2'>⚇</span><span class='Number'>1</span> <span class='Bracket'>⟨</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>3</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Bracket'>⟩⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>5</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>7</span><span class='Bracket'>⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>8</span><span class='Separator'>,</span><span class='Number'>9</span><span class='Separator'>,</span><span class='Number'>10</span><span class='Bracket'>⟩⟩</span><span class='Separator'>,</span><span class='Bracket'>⟨</span><span class='Number'>11</span><span class='Separator'>,</span><span class='Number'>12</span><span class='Bracket'>⟩⟩</span> <span class='Value'>[</span> <span class='Number'>1</span> <span class='Value'>[</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Value'>]</span> <span class='Number'>2</span> <span class='Value'>]</span> </pre> diff --git a/docs/doc/fromDyalog.html b/docs/doc/fromDyalog.html index 57196984..ae6fc64b 100644 --- a/docs/doc/fromDyalog.html +++ b/docs/doc/fromDyalog.html @@ -25,7 +25,7 @@ <tr> <td>Monad</td> <td><code><span class='Value'>*</span></code></td> -<td><code><span class='Value'>*</span><span class='Composition'>∘</span><span class='Paren'>(</span><span class='Function'>÷</span><span class='Number'>2</span><span class='Paren'>)</span></code></td> +<td><code><span class='Value'>*</span><span class='Modifier2'>∘</span><span class='Paren'>(</span><span class='Function'>÷</span><span class='Number'>2</span><span class='Paren'>)</span></code></td> <td><code><span class='Value'>[</span><span class='Function'>⍋</span><span class='Value'>]</span></code></td> <td><code><span class='Value'>[</span><span class='Function'>⍒</span><span class='Value'>]</span></code></td> <td><code><span class='Value'>~</span></code></td> @@ -40,7 +40,7 @@ <tr> <td>Dyad</td> <td><code><span class='Value'>*</span></code></td> -<td><code><span class='Value'>*</span><span class='Composition'>∘</span><span class='Function'>÷</span><span class='Value'>⍨</span></code></td> +<td><code><span class='Value'>*</span><span class='Modifier2'>∘</span><span class='Function'>÷</span><span class='Value'>⍨</span></code></td> <td><code><span class='Function'>∧</span></code></td> <td><code><span class='Function'>∨</span></code></td> <td><code><span class='Number'>1</span><span class='Function'>+-</span></code></td> @@ -108,7 +108,7 @@ </tr> </tbody> </table> -<p>Modifiers and combinators are a little harder. Many have equivalents in some cases, but Dyalog sometimes chooses different functionality based on whether the operand is an array. In BQN an array is always treated as a constant function.</p> +<p>Modifiers are a little harder. Many have equivalents in some cases, but Dyalog sometimes chooses different functionality based on whether the operand is an array. In BQN an array is always treated as a constant function.</p> <table> <thead> <tr> @@ -116,55 +116,55 @@ <th><code><span class='Modifier'>¨</span></code></th> <th><code><span class='Modifier'>⌜</span></code></th> <th><code><span class='Modifier'>´</span></code></th> -<th><code><span class='Composition'>⎉</span></code></th> -<th><code><span class='Composition'>⍟</span></code></th> +<th><code><span class='Modifier2'>⎉</span></code></th> +<th><code><span class='Modifier2'>⍟</span></code></th> <th><code><span class='Modifier'>˜</span></code></th> -<th><code><span class='Composition'>∘</span></code></th> -<th><code><span class='Composition'>○</span></code></th> -<th><code><span class='Composition'>⟜</span></code></th> +<th><code><span class='Modifier2'>∘</span></code></th> +<th><code><span class='Modifier2'>○</span></code></th> +<th><code><span class='Modifier2'>⟜</span></code></th> </tr> </thead> <tbody> <tr> <td>Dyalog</td> <td><code><span class='Modifier'>¨</span></code></td> -<td><code><span class='Composition'>∘</span><span class='Number'>.</span></code></td> +<td><code><span class='Modifier2'>∘</span><span class='Number'>.</span></code></td> <td><code><span class='Value'>⌿</span></code></td> <td><code><span class='Value'>⍤</span></code></td> <td><code><span class='Value'>⍣</span></code></td> <td><code><span class='Value'>⍨</span></code></td> <td><code><span class='Value'>⍤</span></code></td> <td><code><span class='Value'>⍥</span></code></td> -<td><code><span class='Composition'>∘</span></code></td> +<td><code><span class='Modifier2'>∘</span></code></td> </tr> </tbody> </table> -<p>In BQN <code><span class='Composition'>⎉</span></code> is Rank and <code><span class='Composition'>∘</span></code> is Atop. Dyalog's Atop (<code><span class='Value'>⍤</span></code>) and Over (<code><span class='Value'>⍥</span></code>) were added in version 18.0.</p> +<p>In BQN <code><span class='Modifier2'>⎉</span></code> is Rank and <code><span class='Modifier2'>∘</span></code> is Atop. Dyalog's Atop (<code><span class='Value'>⍤</span></code>) and Over (<code><span class='Value'>⍥</span></code>) were added in version 18.0.</p> <h2 id="for-writing">For writing</h2> -<p>The tables below give approximate implementations of Dyalog primitives for the ones that aren't the same. First- and last-axis pairs are also mostly omitted. BQN just has the first-axis form, and you can get the last-axis form with <code><span class='Composition'>⎉</span><span class='Number'>1</span></code>.</p> +<p>The tables below give approximate implementations of Dyalog primitives for the ones that aren't the same. First- and last-axis pairs are also mostly omitted. BQN just has the first-axis form, and you can get the last-axis form with <code><span class='Modifier2'>⎉</span><span class='Number'>1</span></code>.</p> <table> <tr><th colspan=3>Functions</th></tr> <tr><th> Glyph </th><th> Monadic </th><th> Dyadic </th> </tr> <tr><td> <code><span class='Value'>*</span></code> </td><td colspan=2><code><span class='Function'>⋆</span></code></td> </tr> -<tr><td> <code><span class='Composition'>⍟</span></code> </td><td colspan=2><code><span class='Function'>⋆</span><span class='Modifier'>⁼</span></code></td> </tr> +<tr><td> <code><span class='Modifier2'>⍟</span></code> </td><td colspan=2><code><span class='Function'>⋆</span><span class='Modifier'>⁼</span></code></td> </tr> <tr><td> <code><span class='Function'>!</span></code> </td><td colspan=2>Implement it yourself</td> </tr> -<tr><td> <code><span class='Composition'>○</span></code> </td><td colspan=2>Some complex exponential stuff, maybe</td> </tr> -<tr><td> <code><span class='Value'>~</span></code> </td><td> <code><span class='Function'>¬</span></code> </td><td> <code><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∊/⊣</span></code></td> </tr> +<tr><td> <code><span class='Modifier2'>○</span></code> </td><td colspan=2>Some complex exponential stuff, maybe</td> </tr> +<tr><td> <code><span class='Value'>~</span></code> </td><td> <code><span class='Function'>¬</span></code> </td><td> <code><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊/⊣</span></code></td> </tr> <tr><td> <code><span class='Value'>?</span></code> </td><td colspan=2>Library?</td> </tr> -<tr><td> <code><span class='Value'>⍲</span></code> </td><td> </td><td> <code><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∧</span></code></td> </tr> -<tr><td> <code><span class='Value'>⍱</span></code> </td><td> </td><td> <code><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∨</span></code></td> </tr> +<tr><td> <code><span class='Value'>⍲</span></code> </td><td> </td><td> <code><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∧</span></code></td> </tr> +<tr><td> <code><span class='Value'>⍱</span></code> </td><td> </td><td> <code><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∨</span></code></td> </tr> <tr><td> <code><span class='Value'>⍴</span></code> </td><td> <code><span class='Function'>≢</span></code> </td><td> <code><span class='Function'>⥊</span></code></td> </tr> -<tr><td> <code><span class='Separator'>,</span></code> </td><td> <code><span class='Function'>⥊</span></code> </td><td> <code><span class='Function'>∾</span><span class='Composition'>⎉</span><span class='Number'>1</span></code></td> </tr> +<tr><td> <code><span class='Separator'>,</span></code> </td><td> <code><span class='Function'>⥊</span></code> </td><td> <code><span class='Function'>∾</span><span class='Modifier2'>⎉</span><span class='Number'>1</span></code></td> </tr> <tr><td> <code><span class='Value'>⍪</span></code> </td><td> <code><span class='Function'>⥊</span><span class='Modifier'>˘</span></code> </td><td> <code><span class='Function'>∾</span></code></td> </tr> <tr><td> <code><span class='Function'>↑</span></code> </td><td> <code><span class='Function'>></span></code> </td><td> <code><span class='Function'>↑</span></code></td> </tr> <tr><td> <code><span class='Function'>↓</span></code> </td><td> <code><span class='Function'><</span><span class='Modifier'>˘</span></code> </td><td> <code><span class='Function'>↑</span></code></td> </tr> -<tr><td> <code><span class='Value'>⊂</span></code> </td><td> <code><span class='Function'><</span></code> </td><td> <code><span class='Function'>+</span><span class='Modifier'>`</span><span class='Composition'>⊸</span><span class='Function'>⊔</span></code></td> </tr> -<tr><td> <code><span class='Value'>⊆</span></code> </td><td> <code><span class='Function'><</span><span class='Composition'>⍟</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'><≡</span><span class='Paren'>)</span></code> </td><td> <code><span class='Function'>⊔</span></code></td> </tr> +<tr><td> <code><span class='Value'>⊂</span></code> </td><td> <code><span class='Function'><</span></code> </td><td> <code><span class='Function'>+</span><span class='Modifier'>`</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span></code></td> </tr> +<tr><td> <code><span class='Value'>⊆</span></code> </td><td> <code><span class='Function'><</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'><≡</span><span class='Paren'>)</span></code> </td><td> <code><span class='Function'>⊔</span></code></td> </tr> <tr><td> <code><span class='Function'>∊</span></code> </td><td> <code><span class='Brace'>{</span><span class='Number'>0</span><span class='Function'>=≡</span><span class='Value'>𝕩:</span><span class='Function'>⥊</span><span class='Value'>𝕩</span><span class='Separator'>⋄</span><span class='Function'>∾⥊</span><span class='Value'>∇</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code> </td><td> <code><span class='Function'>∊</span></code></td> </tr> <tr><td> <code><span class='Value'>⊃</span></code> </td><td colspan=2><code><span class='Function'>⊑</span></code></td> </tr> <tr><td> <code><span class='Value'>⍀</span></code> </td><td> </td><td> <code><span class='Function'>/</span><span class='Modifier'>⁼</span></code></td> </tr> <tr><td> <code><span class='Value'>∩</span></code> </td><td> </td><td> <code><span class='Function'>∊/⊣</span></code></td> </tr> -<tr><td> <code><span class='Value'>∪</span></code> </td><td> <code><span class='Function'>⍷</span></code> </td><td> <code><span class='Function'>⊣∾∊</span><span class='Modifier'>˜</span><span class='Function'>¬</span><span class='Composition'>⊸</span><span class='Function'>/⊢</span></code></td> </tr> +<tr><td> <code><span class='Value'>∪</span></code> </td><td> <code><span class='Function'>⍷</span></code> </td><td> <code><span class='Function'>⊣∾∊</span><span class='Modifier'>˜</span><span class='Function'>¬</span><span class='Modifier2'>⊸</span><span class='Function'>/⊢</span></code></td> </tr> <tr><td> <code><span class='Value'>⍳</span></code> </td><td> <code><span class='Function'>↕</span></code> </td><td> <code><span class='Function'>⊐</span></code></td> </tr> <tr><td> <code><span class='Value'>⍸</span></code> </td><td> <code><span class='Function'>/</span></code> </td><td> <code><span class='Function'>⍋</span></code></td> </tr> <tr><td> <code><span class='Function'>⍋</span></code> </td><td> <code><span class='Function'>⍋</span></code> </td><td> Give up </td> </tr> @@ -172,9 +172,9 @@ <tr><td> <code><span class='Function'>≢</span></code> </td><td> <code><span class='Function'>≠</span></code> </td><td> <code><span class='Function'>≢</span></code></td> </tr> <tr><td> <code><span class='Value'>⍎</span></code> </td><td colspan=2 rowspan=2>To be decided</td> </tr> <tr><td> <code><span class='Value'>⍕</span></code> </td> </tr> -<tr><td> <code><span class='Value'>⊥</span></code> </td><td> </td><td> <code><span class='Brace'>{</span><span class='Function'>+</span><span class='Composition'>⟜</span><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Composition'>⊸</span><span class='Function'>×</span><span class='Paren'>)</span><span class='Modifier'>´</span><span class='Function'>⌽</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code> </td> </tr> -<tr><td> <code><span class='Value'>⊤</span></code> </td><td> </td><td> <code><span class='Brace'>{</span><span class='Value'>𝕨</span><span class='Function'>|</span><span class='Number'>1</span><span class='Function'>↓⌊</span><span class='Composition'>∘</span><span class='Function'>÷</span><span class='Modifier'>`</span><span class='Composition'>⌾</span><span class='Function'>⌽</span><span class='Value'>𝕨</span><span class='Function'>∾<</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code></td> </tr> -<tr><td> <code><span class='Value'>⌹</span></code> </td><td colspan=2><code><span class='Function'>+</span><span class='Modifier'>´</span><span class='Composition'>∘</span><span class='Function'>×</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span><span class='Modifier'>⁼</span></code> I guess</td> </tr> +<tr><td> <code><span class='Value'>⊥</span></code> </td><td> </td><td> <code><span class='Brace'>{</span><span class='Function'>+</span><span class='Modifier2'>⟜</span><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Modifier2'>⊸</span><span class='Function'>×</span><span class='Paren'>)</span><span class='Modifier'>´</span><span class='Function'>⌽</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code> </td> </tr> +<tr><td> <code><span class='Value'>⊤</span></code> </td><td> </td><td> <code><span class='Brace'>{</span><span class='Value'>𝕨</span><span class='Function'>|</span><span class='Number'>1</span><span class='Function'>↓⌊</span><span class='Modifier2'>∘</span><span class='Function'>÷</span><span class='Modifier'>`</span><span class='Modifier2'>⌾</span><span class='Function'>⌽</span><span class='Value'>𝕨</span><span class='Function'>∾<</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code></td> </tr> +<tr><td> <code><span class='Value'>⌹</span></code> </td><td colspan=2><code><span class='Function'>+</span><span class='Modifier'>´</span><span class='Modifier2'>∘</span><span class='Function'>×</span><span class='Modifier2'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span><span class='Modifier'>⁼</span></code> I guess</td> </tr> <tr><td> <code><span class='Value'>⌷</span></code> </td><td> N/A </td><td> <code><span class='Function'>⊏</span></code></td> </tr> </table> @@ -185,18 +185,18 @@ <tr><td> <code><span class='Value'>⍀</span></code> </td><td colspan=2> <code><span class='Function'>↑</span></code> or <code><span class='Modifier'>`</span></code> </td></tr> <tr><td> <code><span class='Modifier'>¨</span></code> </td><td colspan=2> <code><span class='Modifier'>¨</span></code> </td></tr> <tr><td> <code><span class='Value'>⍨</span></code> </td><td colspan=2> <code><span class='Modifier'>˜</span></code> </td></tr> -<tr><td> <code><span class='Value'>⍣</span></code> </td><td colspan=2> <code><span class='Composition'>⍟</span></code> </td></tr> -<tr><td> <code><span class='Value'>f.g</span></code> </td><td> </td><td> <code><span class='Value'>f</span><span class='Modifier'>´</span><span class='Composition'>∘</span><span class='Value'>g</span><span class='Composition'>⍟</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> </td></tr> -<tr><td> <code><span class='Composition'>∘</span><span class='Number'>.f</span></code> </td><td> </td><td> <code><span class='Value'>f</span><span class='Modifier'>⌜</span></code> </td></tr> -<tr><td> <code><span class='Function'>A</span><span class='Composition'>∘</span><span class='Value'>g</span></code> </td><td> <code><span class='Function'>A</span><span class='Composition'>⊸</span><span class='Value'>g</span></code> </td><td> </td></tr> -<tr><td> <code><span class='Value'>f</span><span class='Composition'>∘</span><span class='Function'>B</span></code> </td><td> <code><span class='Value'>f</span><span class='Composition'>⟜</span><span class='Function'>B</span></code> </td><td> </td></tr> -<tr><td> <code><span class='Value'>f</span><span class='Composition'>∘</span><span class='Value'>g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Composition'>⟜</span><span class='Value'>g</span></code> </td></tr> -<tr><td> <code><span class='Value'>f⍤</span><span class='Function'>B</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Composition'>⎉</span><span class='Function'>B</span></code> </td></tr> -<tr><td> <code><span class='Value'>f⍤g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Composition'>∘</span><span class='Value'>g</span></code> </td></tr> -<tr><td> <code><span class='Value'>f⍥g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Composition'>○</span><span class='Value'>g</span></code> </td></tr> -<tr><td> <code><span class='Value'>f@v</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Composition'>⌾</span><span class='Paren'>(</span><span class='Value'>v</span><span class='Composition'>⊸</span><span class='Function'>⊏</span><span class='Paren'>)</span></code> </td></tr> +<tr><td> <code><span class='Value'>⍣</span></code> </td><td colspan=2> <code><span class='Modifier2'>⍟</span></code> </td></tr> +<tr><td> <code><span class='Value'>f.g</span></code> </td><td> </td><td> <code><span class='Value'>f</span><span class='Modifier'>´</span><span class='Modifier2'>∘</span><span class='Value'>g</span><span class='Modifier2'>⍟</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> </td></tr> +<tr><td> <code><span class='Modifier2'>∘</span><span class='Number'>.f</span></code> </td><td> </td><td> <code><span class='Value'>f</span><span class='Modifier'>⌜</span></code> </td></tr> +<tr><td> <code><span class='Function'>A</span><span class='Modifier2'>∘</span><span class='Value'>g</span></code> </td><td> <code><span class='Function'>A</span><span class='Modifier2'>⊸</span><span class='Value'>g</span></code> </td><td> </td></tr> +<tr><td> <code><span class='Value'>f</span><span class='Modifier2'>∘</span><span class='Function'>B</span></code> </td><td> <code><span class='Value'>f</span><span class='Modifier2'>⟜</span><span class='Function'>B</span></code> </td><td> </td></tr> +<tr><td> <code><span class='Value'>f</span><span class='Modifier2'>∘</span><span class='Value'>g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Modifier2'>⟜</span><span class='Value'>g</span></code> </td></tr> +<tr><td> <code><span class='Value'>f⍤</span><span class='Function'>B</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Modifier2'>⎉</span><span class='Function'>B</span></code> </td></tr> +<tr><td> <code><span class='Value'>f⍤g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Modifier2'>∘</span><span class='Value'>g</span></code> </td></tr> +<tr><td> <code><span class='Value'>f⍥g</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Modifier2'>○</span><span class='Value'>g</span></code> </td></tr> +<tr><td> <code><span class='Value'>f@v</span></code> </td><td colspan=2> <code><span class='Value'>f</span><span class='Modifier2'>⌾</span><span class='Paren'>(</span><span class='Value'>v</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span><span class='Paren'>)</span></code> </td></tr> <tr><td> <code><span class='Value'>f⍠</span><span class='Function'>B</span></code> </td><td colspan=2> Uh </td></tr> -<tr><td> <code><span class='Value'>f⌸</span></code> </td><td><code><span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐⊔↕</span><span class='Composition'>∘</span><span class='Function'>≠</span></code></td><td><code><span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐</span><span class='Composition'>⊸</span><span class='Function'>⊔</span></code> </td></tr> +<tr><td> <code><span class='Value'>f⌸</span></code> </td><td><code><span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐⊔↕</span><span class='Modifier2'>∘</span><span class='Function'>≠</span></code></td><td><code><span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span></code> </td></tr> <tr><td> <code><span class='Value'>f⌺</span><span class='Function'>B</span></code> </td><td colspan=2> <code><span class='Function'>↕</span></code> </td></tr> <tr><td> <code><span class='Function'>A</span><span class='Value'>⌶</span></code> </td><td colspan=2> <code><span class='Value'>•</span></code> </td></tr> <tr><td> <code><span class='Value'>f&</span></code> </td><td colspan=2> Nothing yet </td></tr> diff --git a/docs/doc/functional.html b/docs/doc/functional.html index e070e279..bc1b7c73 100644 --- a/docs/doc/functional.html +++ b/docs/doc/functional.html @@ -2,7 +2,7 @@ <h1 id="functional-programming">Functional programming</h1> <p>BQN boasts of its functional capabilities, including first-class functions. What sort of functional support does it have, and how can a BQN programmer exercise these and out themself as a Schemer at heart?</p> <p>First, let's be clear about what the terms we're using mean. A language has <em>first-class functions</em> when functions (however they are defined) can be used in all the same ways as "ordinary" values like numbers and so on, such as being passed as an argument or placed in a list. Lisp and JavaScript have first-class functions, C has unsafe first-class functions via function pointers, and Java and APL don't have them as functions can't be placed in lists or used as arguments. This doesn't mean every operation is supported on functions: for instance, numbers can be added, compared, and sorted; while functions could perhaps be added to give a train, comparing or sorting them as functions (not representations) isn't computable, and BQN doesn't support any of the three operations when passing functions as arguments.</p> -<p>Traditionally APL has worked around its lack of first-class functions with operators or second-order functions. Arrays in APL are first class while functions are second class and operators are third class, and each class can act on the ones before it. However, the three-tier system has some obvious limitations that we'll discuss, and BQN removes these by making every type first class.</p> +<p>Traditionally, APL has worked around its lack of first-class functions with operators, that is, second-order functions. Arrays in APL are first class while functions are second class and operators are third class, and each class can act on the ones before it. However, the three-tier system has some obvious limitations that we'll discuss, and BQN removes these by making every type first class.</p> <p>The term <em>functional programming</em> is more contentious, and has many meanings some of which can be vague. Here I use it for what might be called <em>first-class functional programming</em>, programming that makes significant use of first-class functions; in this usage, Scheme is probably the archetypal functional programming language. However, two other definitions are also worth mentioning. APL is often called a functional programming language on the grounds that functions can be assigned and manipulated, and called recursively, all characteristics it shares with Lisp. I prefer the term <em>function-level programming</em> for this usage. A newer usage, which I call <em>pure functional programming</em>, restricts the term "function" to mathematical functions, which have no side effects, so that functional programming is programming with no side effects, often using monads to accumulate effects as part of arguments and results instead. Finally, <em>typed functional programming</em> is closely associated with pure functional programming and refers to statically-typed functional languages such as Haskell, F#, and Idris (the last of which even supports <em>dependently-typed functional programming</em>, but I already said "finally" so we'll stop there). Of these, BQN supports first-class functional and function-level programming, allows but doesn't encourage pure functional programming, and does not support typed functional programming, as it is dynamically and not statically typed.</p> <p>Another topic we are interested in is <em>lexical scoping</em> and <em>closures</em>. Lexical scoping means that the realm in which a variable exists is determined by its containing context (in BQN, the surrounding set of curly braces <code><span class='Brace'>{}</span></code>, if any) within the source code. A closure is really an implementation mechanism, but it's often used to refer to a property of lexical scoping that appears when functions defined in a particular block can be accessed after the block finishes execution. For example, they might be returned from a function or assigned to a variable outside of that function's scope. In this case the functions can still access variables in the original scope. I consider this property to be a requirement for a correct lexical scoping implementation, but it's traditionally not a part of APL: implementation might not have lexical scoping (for example, J and I believe A+ use static scoping where functions can't access variables in containing scopes) or might cut off the scope once execution ends, leading to value errors that one wouldn't predict from the rules of lexical scoping.</p> <h2 id="functions-in-apl">Functions in APL</h2> @@ -13,23 +13,23 @@ <p><em>Reminder: I am discussing only first-class functional programming here, and not other concepts like pure or typed functional programming!</em></p> <p>What does functional programming in BQN look like? How is it different from the typical APL style of manipulating functions with operators?</p> <h3 id="working-with-roles">Working with roles</h3> -<p>First, let's look at the basics: a small program that takes a function as its argument and result. The function <code><span class='Function'>Lin</span></code> below gives a linear approximation to its function argument based on the values at 0 and 1. To find these two values, we call the argument as a function by using its uppercase spelling, <code><span class='Function'>𝕏</span></code>.</p> +<p>First, let's look at the basics: a small program that has functions as its argument and result. The function <code><span class='Function'>Lin</span></code> below gives a linear approximation to its function argument based on the values at 0 and 1. To find these two values, we call the argument as a function by using its uppercase spelling, <code><span class='Function'>𝕏</span></code>.</p> <pre><span class='Function'>Lin</span> <span class='Gets'>←</span> <span class='Brace'>{</span> <span class='Value'>v0</span> <span class='Gets'>←</span> <span class='Function'>𝕏</span> <span class='Number'>0</span> <span class='Value'>v0</span> <span class='Function'>+</span> <span class='Paren'>((</span><span class='Function'>𝕏</span> <span class='Number'>1</span><span class='Paren'>)</span> <span class='Function'>-</span> <span class='Value'>v0</span><span class='Paren'>)</span> <span class='Function'>×</span> <span class='Function'>⊢</span> <span class='Brace'>}</span> </pre> -<p>We can pass it the exponential function as an argument by giving it the name <code><span class='Function'>Exp</span></code> and then referring to it in lowercase (that is, in a value role). The result is a train that adds 1 to <em>e</em>-1 times the argument.</p> +<p>We can pass it the exponential function as an argument by giving it the name <code><span class='Function'>Exp</span></code> and then referring to it in lowercase (that is, in a subject role). The result is a train that adds 1 to <em>e</em>-1 times the argument.</p> <pre> <span class='Function'>Exp</span> <span class='Gets'>←</span> <span class='Function'>⋆</span> <span class='Function'>Lin</span> <span class='Value'>exp</span> <span class='Paren'>(</span><span class='Number'>1</span> <span class='Function'>+</span> <span class='Paren'>(</span><span class='Number'>1.71828182845905</span> <span class='Function'>×</span> <span class='Function'>⊢</span><span class='Paren'>))</span> </pre> -<p>As with all functions, the result of <code><span class='Function'>Lin</span></code> has a value role. To use it as a function, we give it a name and then use that name with an uppercase spelling.</p> +<p>As with all functions, the result of <code><span class='Function'>Lin</span></code> has a subject role. To use it as a function, we give it a name and then use that name with an uppercase spelling.</p> <pre> <span class='Value'>expLin</span> <span class='Gets'>←</span> <span class='Function'>Lin</span> <span class='Value'>exp</span> <span class='Function'>ExpLin</span> <span class='Number'>5</span> <span class='Number'>9.59140914229523</span> </pre> -<p>A tricker but more compact method is to use the modifier <code><span class='Brace'>{</span><span class='Function'>𝔽</span><span class='Brace'>}</span></code>, as the input to a modifier can have a value or function role but its output always has a function role.</p> +<p>A tricker but more compact method is to use the 1-modifier <code><span class='Brace'>{</span><span class='Function'>𝔽</span><span class='Brace'>}</span></code>, as the input to a modifier can have a subject or function role but its output always has a function role.</p> <pre> <span class='Paren'>(</span><span class='Function'>Lin</span> <span class='Value'>exp</span><span class='Paren'>)</span><span class='Brace'>{</span><span class='Function'>𝔽</span><span class='Brace'>}</span> <span class='Number'>5</span> <span class='Number'>9.59140914229523</span> </pre> @@ -48,27 +48,27 @@ <span class='Number'>9.59140914229523</span> </pre> <h3 id="arrays-of-functions">Arrays of functions</h3> -<p>It's very convenient to put a function in an array, which is fortunate because this is one of the most important uses of functions as values. Here's an example of an array of functions with a reduction applied to it, composing them together.</p> -<pre> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Composition'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span> <span class='Function'>⋆</span><span class='Ligature'>‿</span><span class='Function'>-</span><span class='Ligature'>‿</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>)</span> -<span class='Function'>⋆</span><span class='Composition'>∘</span><span class='Paren'>(</span><span class='Function'>-</span><span class='Composition'>∘</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>))</span> +<p>It's very convenient to put a function in an array, which is fortunate because this is one of the most important uses of functions as subjects. Here's an example of an array of functions with a reduction applied to it, composing them together.</p> +<pre> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Modifier2'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span> <span class='Function'>⋆</span><span class='Ligature'>‿</span><span class='Function'>-</span><span class='Ligature'>‿</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>)</span> +<span class='Function'>⋆</span><span class='Modifier2'>∘</span><span class='Paren'>(</span><span class='Function'>-</span><span class='Modifier2'>∘</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>))</span> </pre> -<p>Like any function, this one can be given a name and then called. A quirk of this way of defining a function is that it has a value role (it's the result of the function <code><span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Composition'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span></code>) and so must be defined with a lowercase name.</p> -<pre> <span class='Value'>gauss</span> <span class='Gets'>←</span> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Composition'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span> <span class='Function'>⋆</span><span class='Ligature'>‿</span><span class='Function'>-</span><span class='Ligature'>‿</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>)</span> +<p>Like any function, this one can be given a name and then called. A quirk of this way of defining a function is that it has a subject role (it's the result of the function <code><span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Modifier2'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span></code>) and so must be defined with a lowercase name.</p> +<pre> <span class='Value'>gauss</span> <span class='Gets'>←</span> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Modifier2'>∘</span><span class='Function'>𝕏</span><span class='Brace'>}</span><span class='Modifier'>´</span> <span class='Function'>⋆</span><span class='Ligature'>‿</span><span class='Function'>-</span><span class='Ligature'>‿</span><span class='Paren'>(</span><span class='Function'>×</span><span class='Modifier'>˜</span><span class='Paren'>)</span> <span class='Function'>Gauss</span> <span class='Number'>2</span> <span class='Number'>0.0183156388887342</span> </pre> <p>Another, and probably more common, use of arrays of functions is to apply several different functions to one or more arguments. Here we apply three different functions to the number 9:</p> -<pre> <span class='Bracket'>⟨</span><span class='Function'>√</span><span class='Separator'>,</span> <span class='Number'>2</span><span class='Composition'>⊸</span><span class='Function'>∾</span><span class='Separator'>,</span> <span class='Function'>⊢-⋆</span><span class='Bracket'>⟩</span> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Value'>𝕩</span><span class='Brace'>}</span><span class='Modifier'>¨</span> <span class='Number'>9</span> +<pre> <span class='Bracket'>⟨</span><span class='Function'>√</span><span class='Separator'>,</span> <span class='Number'>2</span><span class='Modifier2'>⊸</span><span class='Function'>∾</span><span class='Separator'>,</span> <span class='Function'>⊢-⋆</span><span class='Bracket'>⟩</span> <span class='Brace'>{</span><span class='Function'>𝕎</span><span class='Value'>𝕩</span><span class='Brace'>}</span><span class='Modifier'>¨</span> <span class='Number'>9</span> <span class='Value'>[</span> <span class='Number'>3</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>9</span> <span class='Value'>]</span> <span class='Number'>¯8094.083927575384</span> <span class='Value'>]</span> </pre> -<p>The composition Choose (<code><span class='Composition'>◶</span></code>) relies on arrays of functions to… function. It's very closely related to Pick <code><span class='Function'>⊑</span></code>, and in fact when the left operand and the elements of the right operand are all value types there's no real difference: Choose returns the constant function <code><span class='Value'>𝕗</span><span class='Function'>⊑</span><span class='Value'>𝕘</span></code>.</p> -<pre> <span class='Number'>2</span><span class='Composition'>◶</span><span class='String'>"abcdef"</span> <span class='String'>"arg"</span> +<p>The 2-modifier Choose (<code><span class='Modifier2'>◶</span></code>) relies on arrays of functions to… function. It's very closely related to Pick <code><span class='Function'>⊑</span></code>, and in fact when the left operand and the elements of the right operand are all data there's no real difference: Choose returns the constant function <code><span class='Value'>𝕗</span><span class='Function'>⊑</span><span class='Value'>𝕘</span></code>.</p> +<pre> <span class='Number'>2</span><span class='Modifier2'>◶</span><span class='String'>"abcdef"</span><span class='Ligature'>‿</span><span class='String'>"arg"</span> <span class='Value'>c</span> </pre> <p>When the operands contain functions, however, the potential of Choose as a ternary-or-more operator opens up. Here's a function for a step in the Collatz sequence, which halves an even input but multiplies an odd input by 3 and adds 1. To get the sequence for a number, we can apply the same function many times. It's an open problem whether the sequence always ends with the repetition 4, 2, 1, but it can take a surprisingly long time to get there—try 27 as an argument.</p> -<pre> <span class='Paren'>(</span><span class='Number'>2</span><span class='Composition'>⊸</span><span class='Function'>|</span><span class='Paren'>)</span><span class='Composition'>◶</span><span class='Bracket'>⟨</span><span class='Function'>÷</span><span class='Composition'>⟜</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>3</span><span class='Function'>×⊢</span><span class='Bracket'>⟩</span><span class='Modifier'>¨</span> <span class='Number'>6</span><span class='Ligature'>‿</span><span class='Number'>7</span> +<pre> <span class='Paren'>(</span><span class='Number'>2</span><span class='Modifier2'>⊸</span><span class='Function'>|</span><span class='Paren'>)</span><span class='Modifier2'>◶</span><span class='Bracket'>⟨</span><span class='Function'>÷</span><span class='Modifier2'>⟜</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>3</span><span class='Function'>×⊢</span><span class='Bracket'>⟩</span><span class='Modifier'>¨</span> <span class='Number'>6</span><span class='Ligature'>‿</span><span class='Number'>7</span> <span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>22</span> <span class='Value'>]</span> - <span class='Paren'>(</span><span class='Number'>2</span><span class='Composition'>⊸</span><span class='Function'>|</span><span class='Paren'>)</span><span class='Composition'>◶</span><span class='Bracket'>⟨</span><span class='Function'>÷</span><span class='Composition'>⟜</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>3</span><span class='Function'>×⊢</span><span class='Bracket'>⟩</span><span class='Composition'>⍟</span><span class='Paren'>(</span><span class='Function'>↕</span><span class='Number'>10</span><span class='Paren'>)</span> <span class='Number'>6</span> + <span class='Paren'>(</span><span class='Number'>2</span><span class='Modifier2'>⊸</span><span class='Function'>|</span><span class='Paren'>)</span><span class='Modifier2'>◶</span><span class='Bracket'>⟨</span><span class='Function'>÷</span><span class='Modifier2'>⟜</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Function'>+</span><span class='Number'>3</span><span class='Function'>×⊢</span><span class='Bracket'>⟩</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Function'>↕</span><span class='Number'>10</span><span class='Paren'>)</span> <span class='Number'>6</span> <span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>3</span> <span class='Number'>10</span> <span class='Number'>5</span> <span class='Number'>16</span> <span class='Number'>8</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Number'>4</span> <span class='Value'>]</span> </pre> diff --git a/docs/doc/group.html b/docs/doc/group.html index 052aea7b..aa96a12d 100644 --- a/docs/doc/group.html +++ b/docs/doc/group.html @@ -2,11 +2,11 @@ <h1 id="group">Group</h1> <p>BQN replaces the <a href="https://aplwiki.com/wiki/Key">Key</a> operator from J or Dyalog APL, and <a href="https://aplwiki.com/wiki/Partition_representations">many forms of partitioning</a>, with a single (ambivalent) Group function <code><span class='Function'>⊔</span></code>. This function is somewhat related to the K function <code><span class='Function'>=</span></code> of the same name, but results in an array rather than a dictionary.</p> <p>The BQN prototype does not implement this function: instead it uses <code><span class='Function'>⊔</span></code> for a Group/Key function very similar to <code><span class='Brace'>{</span><span class='Value'>⊂⍵</span><span class='Brace'>}</span><span class='Value'>⌸</span></code> in Dyalog APL, and also has a Cut function <code><span class='Value'>\</span></code>. The new BQN Group on numeric arguments (equivalently, rank-1 results) can be defined like this:</p> -<pre><span class='Function'>⊔</span><span class='Gets'>↩</span><span class='Paren'>((</span><span class='Function'>↕</span><span class='Number'>1</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Function'>>⌈</span><span class='Modifier'>´</span><span class='Paren'>))</span><span class='Function'>=</span><span class='Modifier'>¨</span><span class='Function'><</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>⊣</span> <span class='Function'>/</span><span class='Modifier'>¨</span><span class='Composition'>⟜</span><span class='Function'><</span> <span class='Function'>↕</span><span class='Composition'>∘</span><span class='Function'>≠</span><span class='Value'>⍠</span><span class='Function'>⊢</span> +<pre><span class='Function'>⊔</span><span class='Gets'>↩</span><span class='Paren'>((</span><span class='Function'>↕</span><span class='Number'>1</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Function'>>⌈</span><span class='Modifier'>´</span><span class='Paren'>))</span><span class='Function'>=</span><span class='Modifier'>¨</span><span class='Function'><</span><span class='Paren'>)</span><span class='Modifier2'>∘</span><span class='Function'>⊣</span> <span class='Function'>/</span><span class='Modifier'>¨</span><span class='Modifier2'>⟜</span><span class='Function'><</span> <span class='Function'>↕</span><span class='Modifier2'>∘</span><span class='Function'>≠</span><span class='Value'>⍠</span><span class='Function'>⊢</span> </pre> -<p>Once defined, the old BQN Key (dyadic) is <code><span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐</span><span class='Composition'>⊸</span><span class='Function'>⊔</span></code> and Group (monadic) is <code><span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐⊔↕</span><span class='Composition'>∘</span><span class='Function'>≠</span></code> using the Deduplicate or Unique Cells function <code><span class='Function'>⍷</span></code> (BQN2NGN spells it <code><span class='Value'>∪</span></code>). Cut on matching-length arguments is <code><span class='Function'>+</span><span class='Modifier'>`</span><span class='Composition'>⊸</span><span class='Function'>⊔</span></code>.</p> +<p>Once defined, the old BQN Key (dyadic) is <code><span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span></code> and Group (monadic) is <code><span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐⊔↕</span><span class='Modifier2'>∘</span><span class='Function'>≠</span></code> using the Deduplicate or Unique Cells function <code><span class='Function'>⍷</span></code> (BQN2NGN spells it <code><span class='Value'>∪</span></code>). Cut on matching-length arguments is <code><span class='Function'>+</span><span class='Modifier'>`</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span></code>.</p> <h2 id="definition">Definition</h2> -<p>Group operates on a numeric list of indices and a value array, treated as a list of its major cells, to produce a list of groups, each of which is a selection from the values. The indices and values have the same length, and each value cell is paired with the index at the same position. That index indicates the result group the value should go into, with an "index" of ¯1 indicating that it should be dropped and not appear in the result.</p> +<p>Group operates on a numeric list of indices and an array, treated as a list of its major cells or "values", to produce a list of groups, each of which is a selection from those cells. The two arrays have the same length, and each value cell is paired with the index at the same position. That index indicates the result group the cell should go into, with an "index" of ¯1 indicating that it should be dropped and not appear in the result.</p> <pre> <span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span> <span class='Function'>≍</span> <span class='String'>"abcde"</span> <span class='Comment'># Corresponding indices and values </span><span class='Value'>┌</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Number'>0</span> <span class='Number'>1</span> @@ -15,9 +15,9 @@ <span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span> <span class='Function'>⊔</span> <span class='String'>"abcde"</span> <span class='Comment'># Values grouped by index </span><span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>ad</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>be</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>c</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> -<p>For example, we might choose to group a list of words by length. Within each group, values maintain the ordering they had in the list originally.</p> +<p>For example, we might choose to group a list of words by length. Within each group, cells maintain the ordering they had in the list originally.</p> <pre> <span class='Value'>phrase</span> <span class='Gets'>←</span> <span class='String'>"BQN"</span><span class='Ligature'>‿</span><span class='String'>"uses"</span><span class='Ligature'>‿</span><span class='String'>"notation"</span><span class='Ligature'>‿</span><span class='String'>"as"</span><span class='Ligature'>‿</span><span class='String'>"a"</span><span class='Ligature'>‿</span><span class='String'>"tool"</span><span class='Ligature'>‿</span><span class='String'>"of"</span><span class='Ligature'>‿</span><span class='String'>"thought"</span> - <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Function'>≠</span><span class='Modifier'>¨</span><span class='Composition'>⊸</span><span class='Function'>⊔</span> <span class='Value'>phrase</span> + <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Function'>≠</span><span class='Modifier'>¨</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span> <span class='Value'>phrase</span> <span class='Value'>┌</span> <span class='Value'>[]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Value'>]</span> <span class='Value'>]</span> @@ -32,9 +32,9 @@ </pre> <p>(Could we define <code><span class='Value'>phrase</span></code> more easily? See <a href="#partitioning">below</a>.)</p> <p>If we'd like to ignore words of 0 letters, or more than 5, we can set all word lengths greater than 5 to 0, then reduce the lengths by 1. Two words end up with left argument values of ¯1 and are omitted from the result.</p> -<pre> <span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>˜</span><span class='Function'>≤</span><span class='Composition'>⟜</span><span class='Number'>5</span><span class='Composition'>⊸</span><span class='Function'>×≠</span><span class='Modifier'>¨</span><span class='Value'>phrase</span> +<pre> <span class='Number'>1</span> <span class='Function'>-</span><span class='Modifier'>˜</span> <span class='Function'>≤</span><span class='Modifier2'>⟜</span><span class='Number'>5</span><span class='Modifier2'>⊸</span><span class='Function'>×</span> <span class='Function'>≠</span><span class='Modifier'>¨</span> <span class='Value'>phrase</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>¯1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>3</span> <span class='Number'>1</span> <span class='Number'>¯1</span> <span class='Value'>]</span> - <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Brace'>{</span><span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>˜</span><span class='Function'>≤</span><span class='Composition'>⟜</span><span class='Number'>5</span><span class='Composition'>⊸</span><span class='Function'>×≠</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span><span class='Brace'>}</span><span class='Composition'>⊸</span><span class='Function'>⊔</span> <span class='Value'>phrase</span> + <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Brace'>{</span><span class='Number'>1</span><span class='Function'>-</span><span class='Modifier'>˜</span><span class='Function'>≤</span><span class='Modifier2'>⟜</span><span class='Number'>5</span><span class='Modifier2'>⊸</span><span class='Function'>×≠</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span><span class='Brace'>}</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span> <span class='Value'>phrase</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>as</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>of</span> <span class='Value'>]</span> <span class='Value'>]</span> @@ -43,7 +43,7 @@ <span class='Value'>┘</span> </pre> <p>Note that the length of the result is determined by the largest index. So the result never includes trailing empty groups. A reader of the above code might expect 5 groups (lengths 1 through 5), but there are no words of length 5, so the last group isn't there.</p> -<p>When Group is called dyadically, the left argument is used for the indices and the right is used for values, as seen above. When it is called monadically, the right argument gives the indices and the values grouped are the right argument's indices, that is, <code><span class='Function'>↕≠</span><span class='Value'>𝕩</span></code>.</p> +<p>When Group is called dyadically, the left argument is used for the indices and the right is used for values, as seen above. When it is called monadically, the right argument, which must be a list, gives the indices and the values grouped are the right argument's indices, that is, <code><span class='Function'>↕≠</span><span class='Value'>𝕩</span></code>.</p> <pre> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Function'>⊔</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>¯1</span><span class='Ligature'>‿</span><span class='Number'>2</span> <span class='Value'>┌</span> <span class='Value'>[]</span> @@ -54,7 +54,7 @@ </pre> <p>Here, the index 2 appears at indices 0 and 3 while the index 3 appears at index 1.</p> <h3 id="multidimensional-grouping">Multidimensional grouping</h3> -<p>Dyadic Group allows the right argument to be grouped along multiple axes by using a nested left argument. In this case, the left argument must be a vector of numeric vectors, and the result has rank <code><span class='Function'>≠</span><span class='Value'>𝕨</span></code> while its elements—as always—have the same rank as <code><span class='Value'>𝕩</span></code>. The result shape is <code><span class='Number'>1</span><span class='Function'>+⌈</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span></code>, while the shape of element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is <code><span class='Value'>i</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Composition'>∘</span><span class='Function'>=</span><span class='Modifier'>¨</span><span class='Value'>𝕨</span></code>. If every element of <code><span class='Value'>𝕨</span></code> is sorted ascending and contains only non-negative numbers, we have <code><span class='Value'>𝕩</span><span class='Function'>≡∾</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code>, that is, Join is the inverse of Partition.</p> +<p>Dyadic Group allows the right argument to be grouped along multiple axes by using a nested left argument. In this case, the left argument must be a list of numeric lists, and the result has rank <code><span class='Function'>≠</span><span class='Value'>𝕨</span></code> while its elements—as always—have the same rank as <code><span class='Value'>𝕩</span></code>. The result shape is <code><span class='Number'>1</span><span class='Function'>+⌈</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span></code>, while the shape of element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is <code><span class='Value'>i</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Modifier2'>∘</span><span class='Function'>=</span><span class='Modifier'>¨</span><span class='Value'>𝕨</span></code>. If every element of <code><span class='Value'>𝕨</span></code> is sorted ascending and contains only non-negative numbers, we have <code><span class='Value'>𝕩</span><span class='Function'>≡∾</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code>, that is, Join is the inverse of Partition.</p> <p>Here we split up a rank-2 array into a rank-2 array of rank-2 arrays. Along the first axis we simply separate the first pair and second pair of rows—a partition. Along the second axis we separate odd from even indices.</p> <pre> <span class='Bracket'>⟨</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Bracket'>⟩</span><span class='Function'>⊔</span><span class='Paren'>(</span><span class='Number'>10</span><span class='Function'>×↕</span><span class='Number'>4</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Modifier'>⌜</span><span class='Function'>↕</span><span class='Number'>7</span> <span class='Value'>┌</span> @@ -68,8 +68,8 @@ <span class='Value'>┘</span> <span class='Value'>┘</span> <span class='Value'>┘</span> </pre> -<p>Each group <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is composed of the cells <code><span class='Value'>j</span><span class='Function'><</span><span class='Modifier'>¨</span><span class='Composition'>⊸</span><span class='Function'>⊏</span><span class='Value'>𝕩</span></code> such that <code><span class='Value'>i</span><span class='Function'>≢</span><span class='Value'>j</span><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Value'>𝕨</span></code>. The groups retain their array structure and ordering along each argument axis. Using multidimensional Replicate we can say that <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is <code><span class='Paren'>(</span><span class='Value'>i</span><span class='Function'>=</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Function'>/</span><span class='Value'>𝕩</span></code>.</p> -<p>The monadic case works similarly: Group Indices always satisfies <code><span class='Function'>⊔</span><span class='Value'>𝕩</span> <span class='Gets'>←→</span> <span class='Value'>𝕩</span><span class='Function'>⊔↕≠</span><span class='Composition'>⚇</span><span class='Number'>1</span> <span class='Value'>x</span></code>. As with <code><span class='Function'>↕</span></code>, the depth of the result of Group Indices is always one greater than that of its argument. A depth-0 argument is not allowed.</p> +<p>Each group <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is composed of the cells <code><span class='Value'>j</span><span class='Function'><</span><span class='Modifier'>¨</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span><span class='Value'>𝕩</span></code> such that <code><span class='Value'>i</span><span class='Function'>≢</span><span class='Value'>j</span><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Value'>𝕨</span></code>. The groups retain their array structure and ordering along each argument axis. Using multidimensional Replicate we can say that <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕨</span><span class='Function'>⊔</span><span class='Value'>𝕩</span></code> is <code><span class='Paren'>(</span><span class='Value'>i</span><span class='Function'>=</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Function'>/</span><span class='Value'>𝕩</span></code>.</p> +<p>The monadic case works similarly: Group Indices always satisfies <code><span class='Function'>⊔</span><span class='Value'>𝕩</span> <span class='Gets'>←→</span> <span class='Value'>𝕩</span><span class='Function'>⊔↕≠</span><span class='Modifier2'>⚇</span><span class='Number'>1</span><span class='Value'>𝕩</span></code>. As with <code><span class='Function'>↕</span></code>, the depth of the result of Group Indices is always one greater than that of its argument. A depth-0 argument is not allowed.</p> <h2 id="properties">Properties</h2> <p>Group is closely related to the inverse of Indices, <code><span class='Function'>/</span><span class='Modifier'>⁼</span></code>. In fact, inverse Indices called on the index argument gives the length of each group:</p> <pre> <span class='Function'>≠</span><span class='Modifier'>¨</span><span class='Function'>⊔</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span> @@ -84,15 +84,15 @@ <p>Called dyadically, Group sorts the right argument according to the left and adds some extra structure. If this structure is removed with Join, Group can be thought of as a kind of sorting.</p> <pre> <span class='Function'>∾</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>¯1</span><span class='Ligature'>‿</span><span class='Number'>2</span> <span class='Function'>⊔</span> <span class='String'>"abcde"</span> <span class='Value'>[</span> <span class='Value'>caeb</span> <span class='Value'>]</span> - <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>¯1</span><span class='Ligature'>‿</span><span class='Number'>2</span> <span class='Brace'>{</span><span class='Function'>F</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'>≤</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>/</span> <span class='Separator'>⋄</span> <span class='Value'>𝕨</span><span class='Function'>⍋</span><span class='Composition'>⊸</span><span class='Function'>⊏</span><span class='Composition'>○</span><span class='Function'>F</span><span class='Value'>𝕩</span><span class='Brace'>}</span> <span class='String'>"abcde"</span> + <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>¯1</span><span class='Ligature'>‿</span><span class='Number'>2</span> <span class='Brace'>{</span><span class='Function'>F</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Number'>0</span><span class='Function'>≤</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>/</span> <span class='Separator'>⋄</span> <span class='Value'>𝕨</span><span class='Function'>⍋</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span><span class='Modifier2'>○</span><span class='Function'>F</span><span class='Value'>𝕩</span><span class='Brace'>}</span> <span class='String'>"abcde"</span> <span class='Value'>[</span> <span class='Value'>caeb</span> <span class='Value'>]</span> </pre> <p>Group can even be implemented with the same techniques as a bucket sort, which can be branchless and fast.</p> <h2 id="applications">Applications</h2> -<p>The obvious application of Group is to group some values according to a known or computed property. If this property isn't an integer, it can be turned into one using Unique and Index Of (the combination <code><span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐</span></code> has been called "self-classify").</p> +<p>The obvious application of Group is to group some values according to a known or computed property. If this property isn't an integer, it can be turned into one using Unique and Index Of (the combination <code><span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span></code> has been called "self-classify").</p> <pre> <span class='Value'>ln</span> <span class='Gets'>←</span> <span class='String'>"Phelps"</span><span class='Ligature'>‿</span><span class='String'>"Latynina"</span><span class='Ligature'>‿</span><span class='String'>"Bjørgen"</span><span class='Ligature'>‿</span><span class='String'>"Andrianov"</span><span class='Ligature'>‿</span><span class='String'>"Bjørndalen"</span> <span class='Value'>co</span> <span class='Gets'>←</span> <span class='String'>"US"</span> <span class='Ligature'>‿</span><span class='String'>"SU"</span> <span class='Ligature'>‿</span><span class='String'>"NO"</span> <span class='Ligature'>‿</span><span class='String'>"SU"</span> <span class='Ligature'>‿</span><span class='String'>"NO"</span> - <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Function'>⍷</span><span class='Composition'>⊸</span><span class='Function'>⊐</span><span class='Composition'>⊸</span><span class='Function'>⊔</span> <span class='Value'>ln</span> + <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Function'>⍷</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span> <span class='Value'>ln</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Function'>Phelps</span> <span class='Value'>]</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Function'>Latynina</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Function'>Andrianov</span> <span class='Value'>]</span> <span class='Value'>]</span> @@ -101,7 +101,7 @@ </pre> <p>If we would like a particular index to key correspondence, we can use a fixed left argument to Index Of.</p> <pre> <span class='Value'>countries</span> <span class='Gets'>←</span> <span class='String'>"IT"</span><span class='Ligature'>‿</span><span class='String'>"JP"</span><span class='Ligature'>‿</span><span class='String'>"NO"</span><span class='Ligature'>‿</span><span class='String'>"SU"</span><span class='Ligature'>‿</span><span class='String'>"US"</span> - <span class='Value'>countries</span> <span class='Function'>∾</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Value'>countries</span><span class='Composition'>⊸</span><span class='Function'>⊐</span><span class='Composition'>⊸</span><span class='Function'>⊔</span> <span class='Value'>ln</span> + <span class='Value'>countries</span> <span class='Function'>∾</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Value'>countries</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span><span class='Modifier2'>⊸</span><span class='Function'>⊔</span> <span class='Value'>ln</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Function'>IT</span> <span class='Value'>]</span> <span class='Value'>[]</span> <span class='Value'>[</span> <span class='Function'>JP</span> <span class='Value'>]</span> <span class='Value'>[]</span> @@ -112,7 +112,7 @@ </pre> <p>However, this solution will fail if there are trailing keys with no values. To force the result to have a particular length you can append that length as a dummy index to each argument, then remove the last group after grouping.</p> <pre> <span class='Value'>countries</span> <span class='Gets'>↩</span> <span class='String'>"IT"</span><span class='Ligature'>‿</span><span class='String'>"JP"</span><span class='Ligature'>‿</span><span class='String'>"NO"</span><span class='Ligature'>‿</span><span class='String'>"SU"</span><span class='Ligature'>‿</span><span class='String'>"US"</span><span class='Ligature'>‿</span><span class='String'>"ZW"</span> - <span class='Value'>countries</span> <span class='Function'>∾</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Value'>countries</span><span class='Brace'>{</span><span class='Value'>𝕗</span><span class='Composition'>⊸</span><span class='Function'>⊐</span><span class='Composition'>⊸</span><span class='Paren'>(</span><span class='Number'>¯1</span><span class='Function'>↓⊔</span><span class='Composition'>○</span><span class='Paren'>(</span><span class='Function'>∾</span><span class='Composition'>⟜</span><span class='Paren'>(</span><span class='Function'>≠</span><span class='Value'>𝕗</span><span class='Paren'>)))</span><span class='Brace'>}</span> <span class='Value'>ln</span> + <span class='Value'>countries</span> <span class='Function'>∾</span><span class='Modifier'>˘</span> <span class='Value'>co</span> <span class='Value'>countries</span><span class='Brace'>{</span><span class='Value'>𝕗</span><span class='Modifier2'>⊸</span><span class='Function'>⊐</span><span class='Modifier2'>⊸</span><span class='Paren'>(</span><span class='Number'>¯1</span><span class='Function'>↓⊔</span><span class='Modifier2'>○</span><span class='Paren'>(</span><span class='Function'>∾</span><span class='Modifier2'>⟜</span><span class='Paren'>(</span><span class='Function'>≠</span><span class='Value'>𝕗</span><span class='Paren'>)))</span><span class='Brace'>}</span> <span class='Value'>ln</span> <span class='Value'>┌</span> <span class='Value'>[</span> <span class='Function'>IT</span> <span class='Value'>]</span> <span class='Value'>[]</span> <span class='Value'>[</span> <span class='Function'>JP</span> <span class='Value'>]</span> <span class='Value'>[]</span> @@ -124,29 +124,29 @@ </pre> <h3 id="partitioning">Partitioning</h3> <p>In examples we have been using a list of strings stranded together. Often it's more convenient to write the string with spaces, and split it up as part of the code. In this case, the index corresponding to each word (that is, each letter in the word) is the number of spaces before it. We can get this number of spaces from a prefix sum on the boolean list which is 1 at each space.</p> -<pre> <span class='String'>' '</span><span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>`</span><span class='Composition'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>"BQN uses notation as a tool of thought"</span> +<pre> <span class='String'>' '</span><span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>`</span><span class='Modifier2'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>"BQN uses notation as a tool of thought"</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Function'>BQN</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>uses</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>notation</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>as</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>tool</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>of</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>thought</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> <p>To avoid including spaces in the result, we should change the result index at each space to ¯1. Here is one way to do that:</p> -<pre> <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>"BQN uses notation as a tool of thought"</span> +<pre> <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Paren'>)</span><span class='Modifier2'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>"BQN uses notation as a tool of thought"</span> <span class='Value'>[</span> <span class='Value'>[</span> <span class='Function'>BQN</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>uses</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>notation</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>as</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>a</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>tool</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>of</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>thought</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> -<p>A function with structural Under, such as <code><span class='Brace'>{</span><span class='Number'>¯1</span><span class='Modifier'>¨</span><span class='Composition'>⌾</span><span class='Paren'>(</span><span class='Value'>𝕩</span><span class='Composition'>⊸</span><span class='Function'>/</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Modifier'>`</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code>, would also work.</p> +<p>A function with structural Under, such as <code><span class='Brace'>{</span><span class='Number'>¯1</span><span class='Modifier'>¨</span><span class='Modifier2'>⌾</span><span class='Paren'>(</span><span class='Value'>𝕩</span><span class='Modifier2'>⊸</span><span class='Function'>/</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Modifier'>`</span><span class='Value'>𝕩</span><span class='Brace'>}</span></code>, would also work.</p> <p>In other cases, we might want to split on spaces, so that words are separated by any number of spaces, and extra spaces don't affect the output. Currently our function makes a new word with each space:</p> -<pre> <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>" string with spaces "</span> +<pre> <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Paren'>)</span><span class='Modifier2'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>" string with spaces "</span> <span class='Value'>[</span> <span class='Value'>[]</span> <span class='Value'>[]</span> <span class='Value'>[</span> <span class='Value'>string</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>with</span> <span class='Value'>]</span> <span class='Value'>[]</span> <span class='Value'>[</span> <span class='Value'>spaces</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> <p>However, trailing spaces are ignored because Group never produces trailing empty groups (to get them back we would use a dummy final character in the string). To avoid empty words, we should increase the word index only once per group of spaces. We can do this by taking the prefix sum of a list that is 1 only for a space with no space before it. To make such a list, we can use the <a href="windows.html">Windows</a> function. We will extend our list with an initial 1 so that leading spaces will be ignored. Then we take windows of the same length as the original list: the first includes the dummy argument followed by a shifted copy of the list, and the second is the original list. These represent whether the previous and current characters are spaces; we want positions where the previous wasn't a space and the current is.</p> -<pre> <span class='Function'>≍</span><span class='Composition'>⟜</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>)</span> <span class='String'>' '</span><span class='Function'>=</span><span class='String'>" string with spaces "</span> <span class='Comment'># All, then filtered, spaces +<pre> <span class='Function'>≍</span><span class='Modifier2'>⟜</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>)</span> <span class='String'>' '</span><span class='Function'>=</span><span class='String'>" string with spaces "</span> <span class='Comment'># All, then filtered, spaces </span><span class='Value'>┌</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> - <span class='Function'>≍</span><span class='Composition'>⟜</span><span class='Paren'>(</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Composition'>∘</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>))</span><span class='String'>' '</span><span class='Function'>=</span><span class='String'>" string with spaces "</span> <span class='Comment'># More processing + <span class='Function'>≍</span><span class='Modifier2'>⟜</span><span class='Paren'>(</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Modifier2'>∘</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>))</span><span class='String'>' '</span><span class='Function'>=</span><span class='String'>" string with spaces "</span> <span class='Comment'># More processing </span><span class='Value'>┌</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>¯1</span> <span class='Number'>¯1</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>0</span> <span class='Number'>¯1</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Number'>¯1</span> <span class='Number'>¯1</span> <span class='Number'>2</span> <span class='Number'>2</span> <span class='Number'>2</span> <span class='Number'>2</span> <span class='Number'>2</span> <span class='Number'>2</span> <span class='Number'>¯1</span> <span class='Number'>¯1</span> <span class='Number'>¯1</span> <span class='Value'>┘</span> - <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Composition'>∘</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>))</span><span class='Composition'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>" string with spaces "</span> <span class='Comment'># Final result + <span class='String'>' '</span><span class='Paren'>((</span><span class='Function'>⊢-</span><span class='Modifier'>˜</span><span class='Function'>¬×+</span><span class='Modifier'>`</span><span class='Modifier2'>∘</span><span class='Paren'>((</span><span class='Function'><</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>1</span><span class='Function'>∾⊢</span><span class='Paren'>))</span><span class='Modifier2'>∘</span><span class='Function'>=⊔⊢</span><span class='Paren'>)</span><span class='String'>" string with spaces "</span> <span class='Comment'># Final result </span><span class='Value'>[</span> <span class='Value'>[</span> <span class='Value'>string</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>with</span> <span class='Value'>]</span> <span class='Value'>[</span> <span class='Value'>spaces</span> <span class='Value'>]</span> <span class='Value'>]</span> </pre> diff --git a/docs/doc/index.html b/docs/doc/index.html index 972611f6..a822c0a9 100644 --- a/docs/doc/index.html +++ b/docs/doc/index.html @@ -9,7 +9,7 @@ </ul> <p>Primitives:</p> <ul> -<li><a href="depth.html">Array depth</a> (<code><span class='Function'>≡</span></code> and <code><span class='Composition'>⚇</span></code>)</li> +<li><a href="depth.html">Array depth</a> (<code><span class='Function'>≡</span></code> and <code><span class='Modifier2'>⚇</span></code>)</li> <li><a href="group.html">Group</a> (<code><span class='Function'>⊔</span></code>)</li> <li><a href="join.html">Join</a> (<code><span class='Function'>∾</span></code>)</li> <li><a href="logic.html">Logical functions</a> (<code><span class='Function'>∧∨¬</span></code>)</li> diff --git a/docs/doc/indices.html b/docs/doc/indices.html index 06f0af0c..68651b13 100644 --- a/docs/doc/indices.html +++ b/docs/doc/indices.html @@ -1,7 +1,7 @@ <head><link href="../style.css" rel="stylesheet"/></head> <h1 id="indices">Indices</h1> -<p>One-dimensional arrays such as K lists or Python arrays have only one kind of index, a single number that refers to an element. For multidimensional arrays using the leading axis theory, there are several types of indexing that can be useful. Historically, nested APL designs have equivocated between these, which I believe can lead to subtle errors when programming. BQN focuses on single-number (depth 0) indices, which can refer to vector elements or array major cells (or more generally indexing along any particular axis). When using this kind of element indices, arrays are required to be vectors. Only two functions allow the use of vector element indices: Range (<code><span class='Function'>↕</span></code>), which can accept a vector argument, and Pick (<code><span class='Function'>⊑</span></code>), which uses the depth-1 arrays in its left argument as index scalars or vectors.</p> -<p>The following functions take or return indices. Except where marked, the indices are in the result; this is by far the most common type of index use. <code><span class='Function'>⊔</span></code> is given two rows as it falls into both cases. Note that in the result case, there is usually no possibility for the programmer to select the format of indices. Instead, the language should be carefully designed to make sure that the return type of indices is as useful as possible.</p> +<p>One-dimensional arrays such as K lists or Python arrays have only one kind of index, a single number that refers to an element. For multidimensional arrays using the leading axis theory, there are several types of indexing that can be useful. Historically, nested APL designs have equivocated between these, which I believe can lead to subtle errors when programming. BQN focuses on single-number (depth 0) indices, which can refer to list elements or array major cells (or more generally indexing along any particular axis). When using this kind of element index, indexed arrays are required to be lists. Only two functions allow the use of list element indices: Range (<code><span class='Function'>↕</span></code>), which can accept a list argument, and Pick (<code><span class='Function'>⊑</span></code>), which uses the depth-1 arrays in its left argument as index scalars or lists. Others use single-number indices to refer to cells.</p> +<p>The following functions take or return indices. Except where marked, the indices are in the result; this is by far the most common type of index use. <code><span class='Function'>⊔</span></code> is given two rows as it falls into both cases. Note that in the result case, there is usually no possibility for the programmer to select the format of indices. Instead, the language should be carefully designed to make sure that the kind of index returned is as useful as possible.</p> <table> <thead> <tr> @@ -16,7 +16,7 @@ <td><code><span class='Function'>↕</span></code></td> <td></td> <td></td> -<td>Element scalar or vector</td> +<td>Element scalar or list</td> </tr> <tr> <td><code><span class='Function'>/</span></code></td> @@ -40,7 +40,7 @@ <td></td> <td><code><span class='Function'>⊑</span></code></td> <td><code><span class='Value'>𝕨</span></code></td> -<td>Element vector</td> +<td>Element list</td> </tr> <tr> <td><code><span class='Function'>⍋</span></code></td> @@ -80,20 +80,20 @@ </tr> </tbody> </table> -<p>Dyadic Transpose (<code><span class='Function'>⍉</span></code>) takes an index into the right argument axes as its left argument, but since array shape is 1-dimensional, there is only one sensible choice for this, a single number.</p> +<p>Dyadic Transpose (<code><span class='Function'>⍉</span></code>) uses indices into the right argument axes in its left argument, but since array shape is 1-dimensional, there is only one sensible choice for this, a single number.</p> <h1 id="element-indices">Element indices</h1> -<p>In general, the index of an element of an array is a vector whose length matches the array rank. It is also possible to use a number for an index into a vector, as the vector index is a singleton, but this must be kept consistent with the rest of the language. NARS-family APLs make the Index Generator (<code><span class='Function'>↕</span></code> in BQN) return a numeric vector when the argument has length 1 but a nested array otherwise. This means that the depth of the result depends on the shape of the argument, inverting the typical hierarchy. BQN shouldn't have such an inconsistency.</p> -<p>Functions <code><span class='Function'>↕</span></code>, <code><span class='Function'>/</span></code>, <code><span class='Function'>⊔</span></code>, and <code><span class='Function'>⊑</span></code> naturally deal with element indices. Each of these can be defined to use vector indices. However, this usually rules out the possibility of using scalar indices, which makes these functions harder to use both with generic array manipulation and with the major cell indices discussed in the next section. For this reason BQN restricts <code><span class='Function'>⊔</span></code> and monadic <code><span class='Function'>/</span></code> to use depth-0 indices, which comes with the requirement that the arguments to monadic <code><span class='Function'>/</span></code> and <code><span class='Function'>⊔</span></code>, and the result of monadic <code><span class='Function'>⊔</span></code>, must be vectors. For dyadic <code><span class='Function'>⊔</span></code> the depth-1 elements of the left argument are vectors of indices along axes of the result; see <a href="group.html#multidimensional-grouping">the documentation</a>. The restriction that comes from using single-number indices is that all axes must be treated independently, so that for example it isn't possible to group elements along diagonals without preprocessing. However, this restriction also prevents Group from having to use an ordering on vector indices.</p> -<p>Unlike <code><span class='Function'>/</span></code> and <code><span class='Function'>⊔</span></code>, <code><span class='Function'>↕</span></code> and <code><span class='Function'>⊑</span></code> do use vector element indices. For <code><span class='Function'>↕</span></code> this is because the output format can be controlled by the argument format: if passed a single number, the result uses single-number indices (so it's a numeric vector); if passed a vector, it uses vector indices and the result has depth 2 (the result depth is always one greater than the argument depth). For <code><span class='Function'>⊑</span></code>, vector indices are chosen because <code><span class='Function'>⊏</span></code> handles scalar indices well already. When selecting multiple elements from a vector, they would typically have to be placed in an array, which is equivalent to <code><span class='Function'>⊏</span></code> with a numeric vector left argument. A single scalar index to <code><span class='Function'>⊑</span></code> is converted to a vector, so it can be used to select a single element if only one is wanted. To select multiple elements, <code><span class='Function'>⊑</span></code> uses each depth-1 array in the left argument as an index and replaces it with that element from the right argument. Because this uses elements as elements (not cells), it is impossible to have conformability errors where elements do not fit together. Ill-formed index errors are of course still possible, and the requirements on indices are quite strict. They must exactly match the structure of the right argument's shape, with no scalars or higher-rank arrays allowed. Single numbers also cannot be used in this context, as it would create ambiguity: is a one-element vector an index, or does it contain an index?</p> +<p>In general, the index of an element of an array is a list whose length matches the array rank. It is also possible to use a number for an index into a list, as the list index is a singleton, but this must be kept consistent with the rest of the language. NARS-family APLs make the Index Generator (<code><span class='Function'>↕</span></code> in BQN) return a numeric list when the argument has length 1 but a nested array otherwise. This means that the depth of the result depends on the shape of the argument, inverting the typical hierarchy. BQN shouldn't have such an inconsistency.</p> +<p>Functions <code><span class='Function'>↕</span></code>, <code><span class='Function'>/</span></code>, <code><span class='Function'>⊔</span></code>, and <code><span class='Function'>⊑</span></code> naturally deal with element indices. Each of these can be defined to use list indices. However, this usually rules out the possibility of using scalar indices, which makes these functions harder to use both with generic array manipulation and with the major cell indices discussed in the next section. For this reason BQN restricts <code><span class='Function'>⊔</span></code> and monadic <code><span class='Function'>/</span></code> to use depth-0 indices, which comes with the requirement that the arguments to monadic <code><span class='Function'>/</span></code> and <code><span class='Function'>⊔</span></code>, and the result of monadic <code><span class='Function'>⊔</span></code>, must be lists. For dyadic <code><span class='Function'>⊔</span></code> the depth-1 elements of the left argument are lists of indices along axes of the result; see <a href="group.html#multidimensional-grouping">the documentation</a>. The restriction that comes from using single-number indices is that all axes must be treated independently, so that for example it isn't possible to group elements along diagonals without preprocessing. However, this restriction also prevents Group from having to use an ordering on list indices.</p> +<p>Unlike <code><span class='Function'>/</span></code> and <code><span class='Function'>⊔</span></code>, <code><span class='Function'>↕</span></code> and <code><span class='Function'>⊑</span></code> do use list element indices. For <code><span class='Function'>↕</span></code> this is because the output format can be controlled by the argument format: if passed a single number, the result uses single-number indices (so it's a numeric list); if passed a list, it uses list indices and the result has depth 2 (the result depth is always one greater than the argument depth). For <code><span class='Function'>⊑</span></code>, list indices are chosen because <code><span class='Function'>⊏</span></code> handles scalar indices well already. When selecting multiple elements from a list, they would typically have to be placed in an array, which is equivalent to <code><span class='Function'>⊏</span></code> with a numeric list left argument. A single scalar index to <code><span class='Function'>⊑</span></code> is converted to a list, so it can be used to select a single element if only one is wanted. To select multiple elements, <code><span class='Function'>⊑</span></code> uses each depth-1 array in the left argument as an index and replaces it with that element from the right argument. Because this uses elements as elements (not cells), it is impossible to have conformability errors where elements do not fit together. Ill-formed index errors are of course still possible, and the requirements on indices are quite strict. They must exactly match the structure of the right argument's shape, with no scalars or higher-rank arrays allowed. Single numbers also cannot be used in this context, as it would create ambiguity: is a one-element list an index, or does it contain an index?</p> <h1 id="major-cell-indices">Major cell indices</h1> -<p>One of the successes of the <a href="https://aplwiki.com/wiki/Leading_axis_theory">leading axis model</a> is to introduce a kind of index for multidimensional arrays that is easier to work with than vector indices. The model introduces <a href="https://aplwiki.com/wiki/Cell">cells</a>, where a cell index is a vector of any length up to the containing array's rank. General cell indices are discussed in the next section; first we introduce a special case, indices into major cells or ¯1-cells. These cells naturally form a list, so the index of a major cell is a single number. These indices can also be considered indices along the first axis, since an index along any axis is a single number.</p> +<p>One of the successes of the <a href="https://aplwiki.com/wiki/Leading_axis_theory">leading axis model</a> is to introduce a kind of index for multidimensional arrays that is easier to work with than list indices. The model introduces <a href="https://aplwiki.com/wiki/Cell">cells</a>, where a cell index is a list of any length up to the containing array's rank. General cell indices are discussed in the next section; first we introduce a special case, indices into major cells or ¯1-cells. These cells naturally form a list, so the index of a major cell is a single number. These indices can also be considered indices along the first axis, since an index along any axis is a single number.</p> <p>Ordering-based functions <code><span class='Function'>⍋</span></code>, <code><span class='Function'>⍒</span></code>, <code><span class='Function'>⊐</span></code>, and <code><span class='Function'>⊒</span></code> only really make sense with major cell indices: while it's possible to order other indices as ravel indices, this probably isn't useful from a programming standpoint. Note that <code><span class='Function'>⊐</span></code> only uses the ordering in an incidental way, because it's defined to return the <em>first</em> index where a right argument cell is found. A mathematician would be more interested in a "pre-image" function that returns the set of all indices where a particular value appears. However, programming usefulness and consistency with the other search functions makes searching for the first index a reasonable choice.</p> -<p>Only one other function—but an important one!—deals with cells rather than elements: <code><span class='Function'>⊏</span></code>, cell selection. Like dyadic <code><span class='Function'>↑↓↕⌽⍉</span></code> (depth 0) and <code><span class='Function'>/⊔</span></code> (depth 1), Select allows either a simple first-axis case where the left argument has depth 1 or less (a depth-0 argument is automatically enclosed), and a multi-axis case where it is a vector of depth-1 elements. In each case the depth-1 arrays index into a single axis.</p> +<p>Only one other function—but an important one!—deals with cells rather than elements: <code><span class='Function'>⊏</span></code>, cell selection. Like dyadic <code><span class='Function'>↑↓↕⌽⍉</span></code> (depth 0) and <code><span class='Function'>/⊔</span></code> (depth 1), Select allows either a simple first-axis case where the left argument has depth 1 or less (a depth-0 argument is automatically enclosed), and a multi-axis case where it is a list of depth-1 elements. In each case the depth-1 arrays index along a single axis.</p> <h1 id="general-cell-indices">General cell indices</h1> <p>BQN does not use general cell indices directly, but it is useful to consider how they might work, and how a programmer might implement functions that use them in BQN if needed. The functions <code><span class='Function'>/</span></code>, <code><span class='Function'>⊔</span></code>, and <code><span class='Function'>⊏</span></code> are the ones that can work with indices for multidimensional arrays but don't already. Here we will examine how multidimensional versions would work.</p> -<p>A cell index into an array of rank <code><span class='Value'>r</span></code> is a numeric vector of length <code><span class='Value'>l</span><span class='Function'>≤</span><span class='Value'>r</span></code>, which then refers to a cell of rank <code><span class='Value'>r</span><span class='Function'>-</span><span class='Value'>l</span></code>. In BQN, the cell at index <code><span class='Value'>i</span></code> of array <code><span class='Value'>a</span></code> is <code><span class='Value'>i</span><span class='Function'><</span><span class='Modifier'>¨</span><span class='Composition'>⊸</span><span class='Function'>⊏</span><span class='Value'>a</span></code>.</p> -<p>Because the shape of a cell index relates to the shape of the indexed array, it makes sense not to enclose cell indices, instead treating them as rows of an index array. A definition for <code><span class='Function'>⊏</span></code> for depth-1 left arguments of rank at least 1 follows: replace each row of the left argument with the indexed cell of the right, yielding a result with the same depth as the right argument and shape <code><span class='Value'>𝕨</span><span class='Paren'>((</span><span class='Number'>¯1</span><span class='Function'>↓⊣</span><span class='Paren'>)</span><span class='Function'>∾</span><span class='Paren'>(</span><span class='Number'>¯1</span><span class='Function'>↑⊣</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>↓</span><span class='Paren'>)</span><span class='Composition'>○</span><span class='Function'>≢</span><span class='Value'>𝕩</span></code>.</p> -<p>To match this format, Range (<code><span class='Function'>↕</span></code>) could be changed to return a flat array when given a shape—what is now <code><span class='Function'>>↕</span></code>. Following this pattern, Indices (<code><span class='Function'>/</span></code>) would also return a flat array, where the indices are rows: using the modified Range, <code><span class='Function'>⥊/↕</span><span class='Composition'>∘</span><span class='Function'>≢</span></code>. Here the result cannot retain the argument's array structure; it is always a rank-2 list of rows.</p> +<p>A cell index into an array of rank <code><span class='Value'>r</span></code> is a numeric list of length <code><span class='Value'>l</span><span class='Function'>≤</span><span class='Value'>r</span></code>, which then refers to a cell of rank <code><span class='Value'>r</span><span class='Function'>-</span><span class='Value'>l</span></code>. In BQN, the cell at index <code><span class='Value'>i</span></code> of array <code><span class='Value'>a</span></code> is <code><span class='Value'>i</span><span class='Function'><</span><span class='Modifier'>¨</span><span class='Modifier2'>⊸</span><span class='Function'>⊏</span><span class='Value'>a</span></code>.</p> +<p>Because the shape of a cell index relates to the shape of the indexed array, it makes sense not to enclose cell indices, instead treating them as rows of an index array. A definition for <code><span class='Function'>⊏</span></code> for depth-1 left arguments of rank at least 1 follows: replace each row of the left argument with the indexed cell of the right, yielding a result with the same depth as the right argument and shape <code><span class='Value'>𝕨</span><span class='Paren'>((</span><span class='Number'>¯1</span><span class='Function'>↓⊣</span><span class='Paren'>)</span><span class='Function'>∾</span><span class='Paren'>(</span><span class='Number'>¯1</span><span class='Function'>↑⊣</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>↓</span><span class='Paren'>)</span><span class='Modifier2'>○</span><span class='Function'>≢</span><span class='Value'>𝕩</span></code>.</p> +<p>To match this format, Range (<code><span class='Function'>↕</span></code>) could be changed to return a flat array when given a shape—what is now <code><span class='Function'>>↕</span></code>. Following this pattern, Indices (<code><span class='Function'>/</span></code>) would also return a flat array, where the indices are rows: using the modified Range, <code><span class='Function'>⥊/↕</span><span class='Modifier2'>∘</span><span class='Function'>≢</span></code>. Here the result cannot retain the argument's array structure; it is always a rank-2 list of rows.</p> <p>The most interesting feature would be that <code><span class='Function'>⊏</span></code> could still allow a nested left argument. In this case each element of the left argument would be an array with row indices as before. However, each row can now index along multiple axes, allowing some adjacent axes to be dependent while others remain independent. This nicely unifies scatter-point and per-axis selection, and allows a mix of the two. However, it doesn't allow total freedom, as non-adjacent axes can't be combined except by also mixing in all axes in between.</p> <p>Group (<code><span class='Function'>⊔</span></code>) could accept the same index format for its index argument. Each depth-1 array in the left argument would correspond to multiple axes in the outer result array, but only a single axis in the argument and inner arrays. Because the ravel ordering of indices must be used to order cells of inner arrays, this modification is not quite as clean as the change to Select. It's also not so clearly useful, as the same results can be obtained by using numeric indices and reshaping the result.</p> <p>Overall it seems to me that the main use of cell indices of the type discussed here is for the Select primitive, and the other cases are somewhat contrived an awkward. So I've chosen not to support it in BQN at all.</p> diff --git a/docs/doc/join.html b/docs/doc/join.html index 744fa923..b65dc46e 100644 --- a/docs/doc/join.html +++ b/docs/doc/join.html @@ -1,6 +1,6 @@ <head><link href="../style.css" rel="stylesheet"/></head> <h1 id="join">Join</h1> -<p>Join (<code><span class='Function'>∾</span></code>) is an extension of the monadic function <a href="https://aplwiki.com/wiki/Raze">Raze</a> from A+ and J to arbitrary argument ranks. It has the same relationship to Join to, the dyadic function sharing the same glyph, as Unbox (<code><span class='Function'>></span></code>) does to Couple (<code><span class='Function'>≍</span></code>): <code><span class='Value'>a</span><span class='Function'>≍</span><span class='Value'>b</span></code> is <code><span class='Function'>></span><span class='Value'>a</span><span class='Ligature'>‿</span><span class='Value'>b</span></code> and <code><span class='Value'>a</span><span class='Function'>∾</span><span class='Value'>b</span></code> is <code><span class='Function'>∾</span><span class='Value'>a</span><span class='Ligature'>‿</span><span class='Value'>b</span></code>. While Unbox and Couple combine arrays (the elements of Unbox's argument, or the arguments themselves for Coups) along a new leading axis, Join and Join to combine them along the existing leading axis. Both Unbox and Join can also be called on a higher-rank array, causing Unbox to add multiple leading axes while Join combines elements along multiple existing axes.</p> +<p>Join (<code><span class='Function'>∾</span></code>) is an extension of the monadic function <a href="https://aplwiki.com/wiki/Raze">Raze</a> from A+ and J to arbitrary argument ranks. It has the same relationship to Join to, the dyadic function sharing the same glyph, as Merge (<code><span class='Function'>></span></code>) does to Couple (<code><span class='Function'>≍</span></code>): <code><span class='Value'>a</span><span class='Function'>≍</span><span class='Value'>b</span></code> is <code><span class='Function'>></span><span class='Value'>a</span><span class='Ligature'>‿</span><span class='Value'>b</span></code> and <code><span class='Value'>a</span><span class='Function'>∾</span><span class='Value'>b</span></code> is <code><span class='Function'>∾</span><span class='Value'>a</span><span class='Ligature'>‿</span><span class='Value'>b</span></code>. While Merge and Couple combine arrays (the elements of Merge's argument, or the arguments themselves for Couple) along a new leading axis, Join and Join to combine them along the existing leading axis. Both Merge and Join can also be called on a higher-rank array, causing Merge to add multiple leading axes while Join combines elements along multiple existing axes.</p> <p>Join can be used to combine several strings into a single string, like <code><span class='Value'>array.join</span><span class='Paren'>()</span></code> in Javascript (but it doesn't force the result to be a string).</p> <pre> <span class='Function'>∾</span><span class='String'>"time"</span><span class='Ligature'>‿</span><span class='String'>"to"</span><span class='Ligature'>‿</span><span class='String'>"join"</span><span class='Ligature'>‿</span><span class='String'>"some"</span><span class='Ligature'>‿</span><span class='String'>"words"</span> <span class='Value'>[</span> <span class='Value'>timetojoinsomewords</span> <span class='Value'>]</span> @@ -33,6 +33,6 @@ <span class='Number'>3</span> <span class='Number'>3</span> <span class='Number'>3</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Number'>5</span> <span class='Number'>5</span> <span class='Number'>5</span> <span class='Number'>5</span> <span class='Value'>┘</span> </pre> -<p>Join has fairly strict requirements on the shapes of its argument elements—although less strict than those of Unbox, which requires they all have identical shape. Suppose the argument to Join has rank <code><span class='Value'>m</span></code>. Each of its elements must have the same rank, <code><span class='Value'>n</span></code>, which is at least <code><span class='Value'>m</span></code>. The trailing shapes <code><span class='Value'>m</span><span class='Function'>↓</span><span class='Composition'>⟜</span><span class='Function'>≢</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span></code> must all be identical (the trailing shape <code><span class='Value'>m</span><span class='Function'>↓≢∾</span><span class='Value'>𝕩</span></code> of the result will match these shapes as well). The other entries in the leading shapes need not be the same, but the shape of an element along a particular axis must depend only on the location of the element along that axis in the full array. For a vector argument this imposes no restriction, since the one leading shape element is allowed to depend on position along the only axis. But for higher ranks the structure quickly becomes more rigid.</p> -<p>To state this requirement more formally in BQN, we say that there is some vector <code><span class='Value'>s</span></code> of length vectors, so that <code><span class='Paren'>(</span><span class='Function'>≢</span><span class='Modifier'>¨</span><span class='Value'>s</span><span class='Paren'>)</span><span class='Function'>≡≢</span><span class='Value'>𝕩</span></code>. We require element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> to have shape <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Value'>s</span></code>. Then the first <code><span class='Value'>m</span></code> axes of the result are <code><span class='Function'>+</span><span class='Modifier'>´¨</span><span class='Value'>s</span></code>.</p> +<p>Join has fairly strict requirements on the shapes of its argument elements—although less strict than those of Merge, which requires they all have identical shape. Suppose the argument to Join has rank <code><span class='Value'>m</span></code>. Each of its elements must have the same rank, <code><span class='Value'>n</span></code>, which is at least <code><span class='Value'>m</span></code>. The trailing shapes <code><span class='Value'>m</span><span class='Function'>↓</span><span class='Modifier2'>⟜</span><span class='Function'>≢</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span></code> must all be identical (the trailing shape <code><span class='Value'>m</span><span class='Function'>↓≢∾</span><span class='Value'>𝕩</span></code> of the result will match these shapes as well). The other entries in the leading shapes need not be the same, but the shape of an element along a particular axis must depend only on the location of the element along that axis in the full array. For a list argument this imposes no restriction, since the one leading shape element is allowed to depend on position along the only axis. But for higher ranks the structure quickly becomes more rigid.</p> +<p>To state this requirement more formally in BQN, we say that there is some list <code><span class='Value'>s</span></code> of lists of lengths, so that <code><span class='Paren'>(</span><span class='Function'>≢</span><span class='Modifier'>¨</span><span class='Value'>s</span><span class='Paren'>)</span><span class='Function'>≡≢</span><span class='Value'>𝕩</span></code>. We require element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> to have shape <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Value'>s</span></code>. Then the first <code><span class='Value'>m</span></code> axes of the result are <code><span class='Function'>+</span><span class='Modifier'>´¨</span><span class='Value'>s</span></code>.</p> diff --git a/docs/doc/logic.html b/docs/doc/logic.html index 87b5fad1..efd37938 100644 --- a/docs/doc/logic.html +++ b/docs/doc/logic.html @@ -1,15 +1,15 @@ <head><link href="../style.css" rel="stylesheet"/></head> <h1 id="logic-functions--and--or--not--also-span-">Logic functions: And, Or, Not (also Span)</h1> -<p>BQN retains the APL symbols <code><span class='Function'>∧</span></code> and <code><span class='Function'>∨</span></code> for logical <em>and</em> and <em>or</em>, and changed APL's <code><span class='Value'>~</span></code> to <code><span class='Function'>¬</span></code> for <em>not</em>, since <code><span class='Value'>~</span></code> looks too much like <code><span class='Modifier'>˜</span></code> and <code><span class='Function'>¬</span></code> is more common in mathematics today. Like J, BQN extends Not to the linear function <code><span class='Number'>1</span><span class='Composition'>⊸</span><span class='Function'>-</span></code>. However, it discards <a href="https://aplwiki.com/wiki/GCD">GCD</a> and <a href="https://aplwiki.com/wiki/LCM">LCM</a> as extensions of And and Or, and instead uses bilinear extensions: And is identical to Times (<code><span class='Function'>×</span></code>), while Or is <code><span class='Function'>×</span><span class='Composition'>⌾</span><span class='Function'>¬</span></code>, following De Morgan's laws (other ways of obtaining a function for Or give an equivalent result—there is only one bilinear extension).</p> +<p>BQN retains the APL symbols <code><span class='Function'>∧</span></code> and <code><span class='Function'>∨</span></code> for logical <em>and</em> and <em>or</em>, and changed APL's <code><span class='Value'>~</span></code> to <code><span class='Function'>¬</span></code> for <em>not</em>, since <code><span class='Value'>~</span></code> looks too much like <code><span class='Modifier'>˜</span></code> and <code><span class='Function'>¬</span></code> is more common in mathematics today. Like J, BQN extends Not to the linear function <code><span class='Number'>1</span><span class='Modifier2'>⊸</span><span class='Function'>-</span></code>. However, it discards <a href="https://aplwiki.com/wiki/GCD">GCD</a> and <a href="https://aplwiki.com/wiki/LCM">LCM</a> as extensions of And and Or, and instead uses bilinear extensions: And is identical to Times (<code><span class='Function'>×</span></code>), while Or is <code><span class='Function'>×</span><span class='Modifier2'>⌾</span><span class='Function'>¬</span></code>, following De Morgan's laws (other ways of obtaining a function for Or give an equivalent result—there is only one bilinear extension).</p> <p>If the arguments are probabilities of independent events, then an extended function gives the probability of the boolean function on their outcomes (for example, if <em>A</em> occurs with probability <code><span class='Value'>a</span></code> and <em>B</em> with probability <code><span class='Value'>b</span></code> independent of <em>A</em>, then <em>A</em> or <em>B</em> occurs with probability <code><span class='Value'>a</span><span class='Function'>∨</span><span class='Value'>b</span></code>). These extensions have also been used in complexity theory, because they allow mathematicians to transfer a logical circuit from the discrete to the continuous domain in order to use calculus on it.</p> <p>Both valences of <code><span class='Function'>¬</span></code> are equivalent to the fork <code><span class='Number'>1</span><span class='Function'>+-</span></code>. The dyadic valence, called "Span", computes the number of integers in the range from <code><span class='Value'>𝕩</span></code> to <code><span class='Value'>𝕨</span></code>, inclusive, when both arguments are integers and <code><span class='Value'>𝕩</span><span class='Function'>≤</span><span class='Value'>𝕨</span></code> (note the reversed order, which is used for consistency with subtraction). This function has many uses, and in particular is relevant to the <a href="windows.html">Windows</a> function.</p> <h2 id="definitions">Definitions</h2> <p>We define:</p> <pre><span class='Function'>Not</span> <span class='Gets'>←</span> <span class='Number'>1</span><span class='Function'>+-</span> <span class='Comment'># also Span </span><span class='Function'>And</span> <span class='Gets'>←</span> <span class='Function'>×</span> -<span class='Function'>Or</span> <span class='Gets'>←</span> <span class='Function'>×</span><span class='Composition'>⌾</span><span class='Function'>¬</span> +<span class='Function'>Or</span> <span class='Gets'>←</span> <span class='Function'>×</span><span class='Modifier2'>⌾</span><span class='Function'>¬</span> </pre> -<p>Note that <code><span class='Function'>¬</span><span class='Modifier'>⁼</span> <span class='Gets'>←→</span> <span class='Function'>¬</span></code>, since the first added 1 will be negated but the second won't; the two 1s cancel leaving two subtractions, and <code><span class='Function'>-</span><span class='Modifier'>⁼</span> <span class='Gets'>←→</span> <span class='Function'>-</span></code>. An alternate definition of Or that matches the typical formula from probability theory is</p> +<p>Note that <code><span class='Function'>¬</span><span class='Modifier'>⁼</span> <span class='Gets'>←→</span> <span class='Function'>¬</span></code>, since when applying <code><span class='Function'>¬</span></code> twice the first added 1 will be negated but the second won't; the two 1s cancel leaving two subtractions, and <code><span class='Function'>-</span><span class='Modifier'>⁼</span> <span class='Gets'>←→</span> <span class='Function'>-</span></code>. An alternate definition of Or that matches the typical formula from probability theory is</p> <pre><span class='Function'>Or</span> <span class='Gets'>←</span> <span class='Function'>+-×</span> </pre> <h2 id="examples">Examples</h2> @@ -37,6 +37,6 @@ <p>A secondary reason is that the GCD falls short as an extension of Or, because its identity element 0 is not total. <code><span class='Number'>0</span><span class='Function'>∨</span><span class='Value'>x</span></code>, for a real number <code><span class='Value'>x</span></code>, is actually equal to <code><span class='Function'>|</span><span class='Value'>x</span></code> and not <code><span class='Value'>x</span></code>: for example, <code><span class='Number'>0</span><span class='Function'>∨</span><span class='Number'>¯2</span></code> is <code><span class='Number'>2</span></code> in APL. This means the identity <code><span class='Number'>0</span><span class='Function'>∨</span><span class='Value'>x</span> <span class='Gets'>←→</span> <span class='Value'>x</span></code> isn't reliable in APL.</p> <h2 id="identity-elements">Identity elements</h2> <p>It's common to apply <code><span class='Function'>∧</span><span class='Modifier'>´</span></code> or <code><span class='Function'>∨</span><span class='Modifier'>´</span></code> to a list (checking whether all elements are true and whether any are true, respectively), and so it's important for extensions to And and Or to share their identity element. Minimum and Maximum do match And and Or when restricted to booleans, but they have different identity elements. It would be dangerous to use Maximum to check whether any element of a list is true because <code><span class='Function'>>⌈</span><span class='Modifier'>´</span><span class='Bracket'>⟨⟩</span></code> yields <code><span class='Number'>¯∞</span></code> instead of <code><span class='Number'>0</span></code>—a bug waiting to happen. Always using <code><span class='Number'>0</span></code> as a left argument to <code><span class='Function'>⌈</span><span class='Modifier'>´</span></code> fixes this problem but requires more work from the programmer, making errors more likely.</p> -<p>It is easy to prove that the bilinear extensions have the identity elements we want. Of course <code><span class='Number'>1</span><span class='Function'>∧</span><span class='Value'>x</span></code> is <code><span class='Number'>1</span><span class='Function'>×</span><span class='Value'>x</span></code>, or <code><span class='Value'>x</span></code>, and <code><span class='Number'>0</span><span class='Function'>∨</span><span class='Value'>x</span></code> is <code><span class='Number'>0</span><span class='Function'>×</span><span class='Composition'>⌾</span><span class='Function'>¬</span><span class='Value'>x</span></code>, or <code><span class='Function'>¬</span><span class='Number'>1</span><span class='Function'>׬</span><span class='Value'>x</span></code>, giving <code><span class='Function'>¬¬</span><span class='Value'>x</span></code> or <code><span class='Value'>x</span></code> again. Both functions are commutative, so these identities are double-sided.</p> +<p>It is easy to prove that the bilinear extensions have the identity elements we want. Of course <code><span class='Number'>1</span><span class='Function'>∧</span><span class='Value'>x</span></code> is <code><span class='Number'>1</span><span class='Function'>×</span><span class='Value'>x</span></code>, or <code><span class='Value'>x</span></code>, and <code><span class='Number'>0</span><span class='Function'>∨</span><span class='Value'>x</span></code> is <code><span class='Number'>0</span><span class='Function'>×</span><span class='Modifier2'>⌾</span><span class='Function'>¬</span><span class='Value'>x</span></code>, or <code><span class='Function'>¬</span><span class='Number'>1</span><span class='Function'>׬</span><span class='Value'>x</span></code>, giving <code><span class='Function'>¬¬</span><span class='Value'>x</span></code> or <code><span class='Value'>x</span></code> again. Both functions are commutative, so these identities are double-sided.</p> <p>Other logical identities do not necessarily hold. For example, in boolean logic And distributes over Or and vice-versa: <code><span class='Value'>a</span><span class='Function'>∧</span><span class='Value'>b</span><span class='Function'>∨</span><span class='Value'>c</span> <span class='Gets'>←→</span> <span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>∧</span><span class='Value'>b</span><span class='Paren'>)</span><span class='Function'>∨</span><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>∧</span><span class='Value'>c</span><span class='Paren'>)</span></code>. But substituting <code><span class='Function'>×</span></code> for <code><span class='Function'>∧</span></code> and <code><span class='Function'>+-×</span></code> for <code><span class='Function'>∨</span></code> we find that the left hand side is <code><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>b</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>c</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>b</span><span class='Function'>×</span><span class='Value'>c</span><span class='Paren'>)</span></code> while the right gives <code><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>b</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>c</span><span class='Paren'>)</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>b</span><span class='Function'>×</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>c</span><span class='Paren'>)</span></code>. These are equivalent for arbitrary <code><span class='Value'>b</span></code> and <code><span class='Value'>c</span></code> only if <code><span class='Value'>a</span><span class='Function'>=</span><span class='Value'>a</span><span class='Function'>×</span><span class='Value'>a</span></code>, that is, <code><span class='Value'>a</span></code> is 0 or 1. In terms of probabilities the difference when <code><span class='Value'>a</span></code> is not boolean is caused by failure of independence. On the left hand side, the two arguments of every logical function are independent. On the right hand side, each pair of arguments to <code><span class='Function'>∧</span></code> are independent, but the two arguments to <code><span class='Function'>∨</span></code>, <code><span class='Value'>a</span><span class='Function'>∧</span><span class='Value'>b</span></code> and <code><span class='Value'>a</span><span class='Function'>∧</span><span class='Value'>c</span></code>, are not. The relationship between these arguments means that logical equivalences no longer apply.</p> diff --git a/docs/doc/transpose.html b/docs/doc/transpose.html index d2629546..43b51b48 100644 --- a/docs/doc/transpose.html +++ b/docs/doc/transpose.html @@ -2,7 +2,7 @@ <h1 id="transpose">Transpose</h1> <p>As in APL, Transpose (<code><span class='Function'>⍉</span></code>) is a tool for rearranging the axes of an array. BQN's version is tweaked to align better with the leading axis model and make common operations easier.</p> <h2 id="monadic-transpose">Monadic Transpose</h2> -<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Composition'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>×</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p> +<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Modifier2'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Modifier2'>∘</span><span class='Function'>×</span><span class='Modifier2'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p> <p>BQN's transpose takes the first axis of its argument and moves it to the end.</p> <pre> <span class='Function'>≢</span> <span class='Value'>a23456</span> <span class='Gets'>←</span> <span class='Function'>↕</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>6</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span> @@ -11,7 +11,7 @@ </pre> <p>On the argument's ravel, this looks like a simple 2-dimensional transpose: one axis is exchanged with a compound axis made up of the other axes. Here we transpose a rank 3 matrix:</p> <pre> <span class='Value'>a322</span> <span class='Gets'>←</span> <span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>⥊↕</span><span class='Number'>12</span> - <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span> + <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'><</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span> @@ -26,7 +26,7 @@ <span class='Value'>┘</span> </pre> <p>But, reading in ravel order, the argument and result have exactly the same element ordering as for the rank 2 matrix <code><span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span></code>:</p> -<pre> <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'><</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span> +<pre> <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'><</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span> @@ -36,27 +36,27 @@ <span class='Value'>┘</span> <span class='Value'>┘</span> </pre> -<p>To exchange multiple axes, use the Power operator. Like Rotate, a negative power will move axes in the other direction. In particular, to move the last axis to the front, use Inverse (as you might expect, this exactly inverts <code><span class='Function'>⍉</span></code>).</p> -<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Composition'>⍟</span><span class='Number'>3</span> <span class='Value'>a23456</span> +<p>To exchange multiple axes, use the Power modifier. Like Rotate, a negative power will move axes in the other direction. In particular, to move the last axis to the front, use Inverse (as you might expect, this exactly inverts <code><span class='Function'>⍉</span></code>).</p> +<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Number'>3</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Value'>]</span> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span> </pre> -<p>In fact, we have <code><span class='Function'>≢⍉</span><span class='Composition'>⍟</span><span class='Value'>k</span> <span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>k</span><span class='Function'>⌽≢</span><span class='Value'>a</span></code> for any number <code><span class='Value'>k</span></code> and array <code><span class='Value'>a</span></code>.</p> -<p>To move axes other than the first, use the Rank operator in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>></span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'><</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p> -<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Composition'>⎉</span><span class='Number'>3</span> <span class='Value'>a23456</span> +<p>In fact, we have <code><span class='Function'>≢⍉</span><span class='Modifier2'>⍟</span><span class='Value'>k</span> <span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>k</span><span class='Function'>⌽≢</span><span class='Value'>a</span></code> for any number <code><span class='Value'>k</span></code> and array <code><span class='Value'>a</span></code>.</p> +<p>To move axes other than the first, use the Rank modifier in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>></span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'><</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p> +<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier2'>⎉</span><span class='Number'>3</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Number'>4</span> <span class='Value'>]</span> </pre> <p>And of course, Rank and Power can be combined to do more complicated transpositions: move a set of contiguous axes with any starting point and length to the end.</p> -<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⎉</span><span class='Number'>¯1</span> <span class='Value'>a23456</span> +<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⎉</span><span class='Number'>¯1</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>6</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span> </pre> <p>Using these forms, we can state BQN's generalized matrix product swapping rule:</p> -<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Composition'>⍟</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⊸</span><span class='Function'>MP</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span> +<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⊸</span><span class='Function'>MP</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span> </pre> <p>Certainly not as concise as APL's version, but not a horror either. BQN's rule is actually more parsimonious in that it only performs the axis exchanges necessary for the computation: it moves the two axes that will be paired with the matrix product into place before the product, and directly exchanges all axes afterwards. Each of these steps is equivalent in terms of data movement to a matrix transpose, the simplest nontrivial transpose to perform. Also remember that for two-dimensional matrices both kinds of transposition are the same, and APL's rule holds in BQN.</p> <p>Axis permutations of the types we've shown generate the complete permutation group on any number of axes, so you could produce any transposition you want with the right sequence of monadic transpositions with Rank. However, this can be unintuitive and tedious. What if you want to transpose the first three axes, leaving the rest alone? With monadic Transpose you have to send some axes to the end, then bring them back to the beginning. For example [following four or five failed tries]:</p> -<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⎉</span><span class='Number'>¯2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes +<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⎉</span><span class='Number'>¯2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes </span><span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span> </pre> <p>In a case like this BQN's Dyadic transpose is much easier.</p> @@ -67,7 +67,7 @@ <span class='Function'>≢</span> <span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>0</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Don't worry too much about this case though </span><span class='Value'>[</span> <span class='Number'>5</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Value'>]</span> </pre> -<p>Since this kind of rearrangement can be counterintuitive, it's often easier to use <code><span class='Function'>⍉</span><span class='Modifier'>⁼</span></code> when specifying all axes. If <code><span class='Value'>p</span><span class='Function'>≡</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>a</span></code>, then we have <code><span class='Function'>≢</span><span class='Value'>p</span><span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>p</span><span class='Function'>⊏≢</span><span class='Value'>a</span></code>.</p> +<p>Since this kind of rearrangement can be counterintuitive, it's often easier to use <code><span class='Function'>⍉</span><span class='Modifier'>⁼</span></code> when specifying all axes. If <code><span class='Value'>p</span><span class='Function'>≡</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>a</span></code>, then we have <code><span class='Function'>≢</span><span class='Value'>p</span><span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>p</span><span class='Function'>⊏≢</span><span class='Value'>a</span></code>.</p> <pre> <span class='Function'>≢</span> <span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>4</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span> <span class='Value'>a23456</span> <span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>5</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>6</span> <span class='Value'>]</span> </pre> @@ -79,10 +79,10 @@ <pre> <span class='Function'>≢</span> <span class='Number'>2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes </span><span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span> </pre> -<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a "default" left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>.</p> +<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a "default" left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>.</p> <h2 id="definitions">Definitions</h2> <p>Here we define the two valences of Transpose more precisely.</p> -<p>A non-array right argument to Transpose is always boxed to get a scalar array before doing anything else.</p> -<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p> -<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'><</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p> +<p>A non-array right argument to Transpose is always enclosed to get a scalar array before doing anything else.</p> +<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p> +<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'><</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p> diff --git a/docs/doc/windows.html b/docs/doc/windows.html index 117acc08..27b9be00 100644 --- a/docs/doc/windows.html +++ b/docs/doc/windows.html @@ -1,6 +1,6 @@ <head><link href="../style.css" rel="stylesheet"/></head> <h1 id="windows">Windows</h1> -<p>In BQN, it's strongly preferred to use functions, and not operators (modifiers and compositions), for array manipulation. Functions are simpler as they have fewer moving parts. They are more concrete, since the array results can always be viewed right away. They are easier to implement with reasonable performance as well, since there is no need to recognize many possible function operands as special cases.</p> +<p>In BQN, it's strongly preferred to use functions, and not modifiers, for array manipulation. Functions are simpler as they have fewer moving parts. They are more concrete, since the array results can always be viewed right away. They are easier to implement with reasonable performance as well, since there is no need to recognize many possible function operands as special cases.</p> <p>The Window function replaces APL's Windowed Reduction, J's more general Infix operator, and Dyalog's Stencil, which is adapted from one case of J's Cut operator.</p> <h2 id="definition">Definition</h2> <p>We'll start with the one-axis case. Here Window's left argument is a number between <code><span class='Number'>0</span></code> and <code><span class='Number'>1</span><span class='Function'>+≠</span><span class='Value'>𝕩</span></code>. The result is composed of slices of <code><span class='Value'>𝕩</span></code> (contiguous sections of major cells) with length <code><span class='Value'>𝕨</span></code>, starting at each possible index in order.</p> @@ -18,10 +18,10 @@ <span class='Number'>5</span><span class='Function'>↑</span><span class='Number'>2</span><span class='Function'>↓</span><span class='String'>"abcdefg"</span> <span class='Value'>[</span> <span class='Value'>cdefg</span> <span class='Value'>]</span> </pre> -<p>Windows differs from Prefixes and Suffixes in that it doesn't add a layer of nesting (it doesn't box each slice). This is possible because the slices have a fixed size.</p> +<p>Windows differs from Prefixes and Suffixes in that it doesn't add a layer of nesting (it doesn't enclose each slice). This is possible because the slices have a fixed size.</p> <h3 id="multiple-dimensions">Multiple dimensions</h3> -<p>The above description applies to a higher-rank right argument. As an example, we'll look at two-row slices of a shape <code><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span></code> array. For convenience, we will box each slice. Note that slices always have the same rank as the argument array.</p> -<pre> <span class='Function'><</span><span class='Composition'>⎉</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Function'>↕</span><span class='String'>"0123"</span><span class='Function'>∾</span><span class='String'>"abcd"</span><span class='Function'>≍</span><span class='String'>"ABCD"</span> +<p>The above description applies to a higher-rank right argument. As an example, we'll look at two-row slices of a shape <code><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span></code> array. For convenience, we will enclose each slice. Note that slices always have the same rank as the argument array.</p> +<pre> <span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Function'>↕</span><span class='String'>"0123"</span><span class='Function'>∾</span><span class='String'>"abcd"</span><span class='Function'>≍</span><span class='String'>"ABCD"</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>0123</span> <span class='Value'>abcd</span> @@ -30,7 +30,7 @@ <span class='Value'>┘</span> </pre> <p>Passing a list as the left argument to Windows takes slices along any number of leading axes. Here are all the shape <code><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span></code> slices:</p> -<pre> <span class='Function'><</span><span class='Composition'>⎉</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>↕</span><span class='String'>"0123"</span><span class='Function'>∾</span><span class='String'>"abcd"</span><span class='Function'>≍</span><span class='String'>"ABCD"</span> +<pre> <span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>↕</span><span class='String'>"0123"</span><span class='Function'>∾</span><span class='String'>"abcd"</span><span class='Function'>≍</span><span class='String'>"ABCD"</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Value'>┌</span> <span class='Number'>01</span> <span class='Number'>12</span> <span class='Number'>23</span> @@ -45,8 +45,8 @@ <p>The slices are naturally arranged along multiple dimensions according to their starting index. Once again the equivalence <code><span class='Value'>i</span><span class='Function'>⊏</span><span class='Value'>l</span><span class='Function'>↕</span><span class='Value'>x</span></code> ←→ <code><span class='Value'>l</span><span class='Function'>↑</span><span class='Value'>i</span><span class='Function'>↓</span><span class='Value'>x</span></code> holds, provided <code><span class='Value'>i</span></code> and <code><span class='Value'>l</span></code> have the same length.</p> <p>If the left argument has length <code><span class='Number'>0</span></code>, then the argument is not sliced along any dimensions. The only slice that results—the entire argument—is then arranged along an additional zero dimensions. In the end, the result is the same as the argument.</p> <h3 id="more-formally">More formally</h3> -<p><code><span class='Value'>𝕩</span></code> is an array. <code><span class='Value'>𝕨</span></code> is a number or numeric list or scalar with <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. The result <code><span class='Value'>z</span></code> has shape <code><span class='Value'>𝕨</span><span class='Function'>∾¬</span><span class='Composition'>⟜</span><span class='Value'>𝕨</span><span class='Composition'>⌾</span><span class='Paren'>((</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Function'>≢</span><span class='Value'>𝕩</span></code>, and element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> is <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜</span><span class='Paren'>(</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)(</span><span class='Function'>↑+</span><span class='Composition'>⌾</span><span class='Paren'>((</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Function'>↓</span><span class='Paren'>)</span><span class='Value'>i</span></code>.</p> -<p>Using <a href="group.html">Group</a> we could also write <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> ←→ <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜</span><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Composition'>○</span><span class='Paren'>(</span><span class='Function'>↕</span><span class='Composition'>∘</span><span class='Function'>≠</span><span class='Paren'>)</span><span class='Function'>≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span> <span class='Function'>+</span><span class='Modifier'>´¨</span><span class='Composition'>∘</span><span class='Function'>⊔</span> <span class='Value'>i</span></code>.</p> +<p><code><span class='Value'>𝕩</span></code> is an array. <code><span class='Value'>𝕨</span></code> is a number or numeric list or scalar with <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. The result <code><span class='Value'>z</span></code> has shape <code><span class='Value'>𝕨</span><span class='Function'>∾¬</span><span class='Modifier2'>⟜</span><span class='Value'>𝕨</span><span class='Modifier2'>⌾</span><span class='Paren'>((</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Function'>≢</span><span class='Value'>𝕩</span></code>, and element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> is <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜</span><span class='Paren'>(</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)(</span><span class='Function'>↑+</span><span class='Modifier2'>⌾</span><span class='Paren'>((</span><span class='Function'>≠</span><span class='Value'>𝕨</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Function'>↓</span><span class='Paren'>)</span><span class='Value'>i</span></code>.</p> +<p>Using <a href="group.html">Group</a> we could also write <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> ←→ <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜</span><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Modifier2'>○</span><span class='Paren'>(</span><span class='Function'>↕</span><span class='Modifier2'>∘</span><span class='Function'>≠</span><span class='Paren'>)</span><span class='Function'>≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span> <span class='Function'>+</span><span class='Modifier'>´¨</span><span class='Modifier2'>∘</span><span class='Function'>⊔</span> <span class='Value'>i</span></code>.</p> <h2 id="symmetry">Symmetry</h2> <p>Let's look at an earlier example, along with its transpose.</p> <pre> <span class='Brace'>{</span><span class='Bracket'>⟨</span><span class='Value'>𝕩</span><span class='Separator'>,</span><span class='Function'>⍉</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Brace'>}</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>"abcdefg"</span> @@ -61,7 +61,7 @@ <span class='Value'>┘</span> </pre> <p>Although the two arrays have different shapes, they are identical where they overlap.</p> -<pre> <span class='Function'>≡</span><span class='Composition'>○</span><span class='Paren'>(</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Composition'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Composition'>⟜</span><span class='Function'>⍉</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>"abcdefg"</span> +<pre> <span class='Function'>≡</span><span class='Modifier2'>○</span><span class='Paren'>(</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Modifier2'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>"abcdefg"</span> <span class='Number'>1</span> </pre> <p>In other words, the i'th element of slice j is the same as the j'th element of slice i: it is the <code><span class='Value'>i</span><span class='Function'>+</span><span class='Value'>j</span></code>'th element of the argument. So transposing still gives a possible result of Windows, but with a different slice length.</p> @@ -84,7 +84,7 @@ <span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>2</span> <span class='Number'>1</span> <span class='Number'>1</span> <span class='Value'>]</span> </pre> <p>This method extends to any number of initial elements. We can modify the running sum above to keep the length constant by starting with two zeros.</p> -<pre> <span class='Paren'>((</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Paren'>(</span><span class='Number'>2</span><span class='Function'>⥊</span><span class='Number'>0</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>∾</span><span class='Paren'>)</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>0</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Separator'>,</span><span class='Number'>3</span><span class='Bracket'>⟩</span> +<pre> <span class='Paren'>((</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'><</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Paren'>(</span><span class='Number'>2</span><span class='Function'>⥊</span><span class='Number'>0</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>∾</span><span class='Paren'>)</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>0</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Separator'>,</span><span class='Number'>3</span><span class='Bracket'>⟩</span> <span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>8</span> <span class='Number'>8</span> <span class='Number'>7</span> <span class='Number'>5</span> <span class='Number'>8</span> <span class='Value'>]</span> </pre> |
