aboutsummaryrefslogtreecommitdiff
path: root/docs/doc/transpose.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/doc/transpose.html')
-rw-r--r--docs/doc/transpose.html4
1 files changed, 2 insertions, 2 deletions
diff --git a/docs/doc/transpose.html b/docs/doc/transpose.html
index 455a8488..96371227 100644
--- a/docs/doc/transpose.html
+++ b/docs/doc/transpose.html
@@ -87,7 +87,7 @@
<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a &quot;default&quot; left argument: <code><span class='Paren'>(</span><span class='Function'>=-</span><span class='Number'>1</span><span class='Modifier'>˙</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>.</p>
<h2 id="definitions">Definitions</h2>
<p>Here we define the two valences of Transpose more precisely.</p>
-<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>=-</span><span class='Number'>1</span><span class='Modifier'>˙</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments (including atoms) it returns the array unchanged rather than giving an error.</p>
-<p>An atom right argument to dyadic Transpose is always enclosed to get a scalar array before doing anything else.</p>
+<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>=-</span><span class='Number'>1</span><span class='Modifier'>˙</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that if the argument is a unit it is returned unchanged rather than giving an error.</p>
+<p>An atom right argument to dyadic Transpose is always enclosed to get an array before doing anything else.</p>
<p>In dyadic Transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>=</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'>&lt;</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p>