aboutsummaryrefslogtreecommitdiff
path: root/docs/doc/transpose.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/doc/transpose.html')
-rw-r--r--docs/doc/transpose.html8
1 files changed, 4 insertions, 4 deletions
diff --git a/docs/doc/transpose.html b/docs/doc/transpose.html
index 2020a520..3b5af23b 100644
--- a/docs/doc/transpose.html
+++ b/docs/doc/transpose.html
@@ -53,7 +53,7 @@
<span class='Bracket'>⟨</span> <span class='Number'>2</span> <span class='Number'>6</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Bracket'>⟩</span>
</pre>
<p>Using these forms, we can state BQN's generalized matrix product swapping rule:</p>
-<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⊸</span><span class='Function'>MP</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span>
+<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Function'>=</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⊸</span><span class='Function'>MP</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span>
</pre>
<p>Certainly not as concise as APL's version, but not a horror either. BQN's rule is actually more parsimonious in that it only performs the axis exchanges necessary for the computation: it moves the two axes that will be paired with the matrix product into place before the product, and directly exchanges all axes afterwards. Each of these steps is equivalent in terms of data movement to a matrix transpose, the simplest nontrivial transpose to perform. Also remember that for two-dimensional matrices both kinds of transposition are the same, and APL's rule holds in BQN.</p>
<p>Axis permutations of the types we've shown generate the complete permutation group on any number of axes, so you could produce any transposition you want with the right sequence of monadic transpositions with Rank. However, this can be unintuitive and tedious. What if you want to transpose the first three axes, leaving the rest alone? With monadic Transpose you have to send some axes to the end, then bring them back to the beginning. For example [following four or five failed tries]:</p>
@@ -80,10 +80,10 @@
<pre> <span class='Function'>≢</span> <span class='Number'>2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes
</span><span class='Bracket'>⟨</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Bracket'>⟩</span>
</pre>
-<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a &quot;default&quot; left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>.</p>
+<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a &quot;default&quot; left argument: <code><span class='Paren'>(</span><span class='Function'>=-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>.</p>
<h2 id="definitions">Definitions</h2>
<p>Here we define the two valences of Transpose more precisely.</p>
<p>A non-array right argument to Transpose is always enclosed to get a scalar array before doing anything else.</p>
-<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p>
-<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'>&lt;</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p>
+<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>=-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p>
+<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>=</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'>&lt;</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p>