diff options
| author | Marshall Lochbaum <mwlochbaum@gmail.com> | 2021-02-11 15:19:25 -0500 |
|---|---|---|
| committer | Marshall Lochbaum <mwlochbaum@gmail.com> | 2021-02-11 15:31:24 -0500 |
| commit | f4d45e6721784c23419045b0ec496d8460efc871 (patch) | |
| tree | 3e1eeddabbd352c6f4fb2be88db5badfd6a081e2 /docs/spec | |
| parent | ae8d0791777e9ff3e43569089ddd446b666ac626 (diff) | |
Dyadic scan inverse
Diffstat (limited to 'docs/spec')
| -rw-r--r-- | docs/spec/inferred.html | 19 |
1 files changed, 14 insertions, 5 deletions
diff --git a/docs/spec/inferred.html b/docs/spec/inferred.html index 79d6e00d..dd7de0f7 100644 --- a/docs/spec/inferred.html +++ b/docs/spec/inferred.html @@ -389,11 +389,6 @@ <td></td> </tr> <tr> -<td><code><span class='Modifier'>`</span></code></td> -<td><code><span class='Brace'>{</span><span class='Function'>!</span><span class='Number'>0</span><span class='Function'><=</span><span class='Value'>๐ฉ</span><span class='Separator'>โ</span><span class='Paren'>(</span><span class='Function'>โโพ</span><span class='Number'>ยฏ1</span><span class='Modifier2'>โธ</span><span class='Function'>โ๐ฝ</span><span class='Modifier'>โผยจ</span><span class='Number'>1</span><span class='Modifier2'>โธ</span><span class='Function'>โ</span><span class='Paren'>)</span><span class='Modifier2'>โ</span><span class='Paren'>(</span><span class='Number'>1</span><span class='Function'><โ </span><span class='Paren'>)</span><span class='Value'>๐ฉ</span><span class='Brace'>}</span></code></td> -<td></td> -</tr> -<tr> <td><code><span class='Function'>F</span><span class='Modifier2'>โ</span><span class='Function'>G</span></code></td> <td><code><span class='Brace'>{</span><span class='Value'>๐จ</span><span class='Function'>G</span><span class='Modifier'>โผ</span><span class='Function'>F</span><span class='Modifier'>โผ</span><span class='Value'>๐ฉ</span><span class='Brace'>}</span></code></td> <td></td> @@ -460,6 +455,20 @@ </tr> </tbody> </table> +<table> +<thead> +<tr> +<th>Mod</th> +<th>Inverse</th> +</tr> +</thead> +<tbody> +<tr> +<td><code><span class='Modifier'>`</span></code></td> +<td><code><span class='Brace'>{</span><span class='Function'>!</span><span class='Number'>0</span><span class='Function'><=</span><span class='Value'>๐ฉ</span> <span class='Separator'>โ</span> <span class='Value'>๐จ</span> <span class='Paren'>(</span><span class='Function'>ยป๐ฝ</span><span class='Modifier'>โผยจ</span><span class='Function'>โข</span><span class='Paren'>)</span><span class='Brace'>{</span><span class='Paren'>(</span><span class='Function'>โโพโ๐ฝ</span><span class='Number'>1</span><span class='Modifier2'>โธ</span><span class='Function'>โ</span><span class='Paren'>)</span><span class='Modifier2'>โ</span><span class='Paren'>(</span><span class='Number'>1</span><span class='Function'><โ </span><span class='Paren'>)</span><span class='Modifier2'>โ</span><span class='Function'>๐ฝ</span><span class='Brace'>}</span> <span class='Value'>๐ฉ</span><span class='Brace'>}</span></code></td> +</tr> +</tbody> +</table> <h2 id="under">Under</h2> <p>The Under 2-modifier <code><span class='Modifier2'>โพ</span></code> conceptually applies its left operand under the action of its right operand. Setting <code><span class='Value'>z</span><span class='Gets'>โ</span><span class='Value'>๐จ</span><span class='Function'>๐ฝ</span><span class='Modifier2'>โพ</span><span class='Function'>๐พ</span><span class='Value'>๐ฉ</span></code>, it satisfies <code><span class='Paren'>(</span><span class='Value'>๐จ</span><span class='Function'>๐ฝ</span><span class='Modifier2'>โ</span><span class='Function'>๐พ</span><span class='Value'>๐ฉ</span><span class='Paren'>)</span> <span class='Function'>โก</span> <span class='Function'>๐พ</span><span class='Value'>z</span></code>. We might say that <code><span class='Function'>๐พ</span></code> transforms values to a new domain, and <code><span class='Modifier2'>โพ</span><span class='Function'>๐พ</span></code> lifts actions <code><span class='Function'>๐ฝ</span></code> performed in this domain to the original domain of values. For example, addition in the logarithmic domain corresponds to multiplication in the linear domain: <code><span class='Function'>+</span><span class='Modifier2'>โพ</span><span class='Paren'>(</span><span class='Function'>โ</span><span class='Modifier'>โผ</span><span class='Paren'>)</span></code> is <code><span class='Function'>ร</span></code> (but less precise if computed in floating point).</p> <p>Let <code><span class='Value'>v</span><span class='Gets'>โ</span><span class='Value'>๐จ</span><span class='Function'>๐ฝ</span><span class='Modifier2'>โ</span><span class='Function'>๐พ</span><span class='Value'>๐ฉ</span></code>, so that <code><span class='Value'>v</span><span class='Function'>โก๐พ</span><span class='Value'>z</span></code>. <code><span class='Value'>v</span></code> is of course well-defined, so the inference step is to find <code><span class='Value'>z</span></code> based on <code><span class='Value'>v</span></code> and possibly the original inputs. We distinguish three cases for Under:</p> |
