aboutsummaryrefslogtreecommitdiff
path: root/docs/doc/windows.html
diff options
context:
space:
mode:
authorMarshall Lochbaum <mwlochbaum@gmail.com>2020-07-21 15:45:25 -0400
committerMarshall Lochbaum <mwlochbaum@gmail.com>2020-07-21 15:45:25 -0400
commit16022acd45703772f62ca9ed9f8d8ef9288be9b5 (patch)
tree96aa748d7dce2f804f9447c55018cd170e4c3751 /docs/doc/windows.html
parent7665fb5a90f783ee5253e71fbdd0573359ca9b88 (diff)
Custom array formatting in the markdown converter
Diffstat (limited to 'docs/doc/windows.html')
-rw-r--r--docs/doc/windows.html63
1 files changed, 36 insertions, 27 deletions
diff --git a/docs/doc/windows.html b/docs/doc/windows.html
index 79d18e77..c20d6591 100644
--- a/docs/doc/windows.html
+++ b/docs/doc/windows.html
@@ -6,35 +6,42 @@
<h2 id="definition">Definition</h2>
<p>We'll start with the one-axis case. Here Window's left argument is a number between <code><span class='Number'>0</span></code> and <code><span class='Number'>1</span><span class='Function'>+β‰ </span><span class='Value'>𝕩</span></code>. The result is composed of slices of <code><span class='Value'>𝕩</span></code> (contiguous sections of major cells) with length <code><span class='Value'>𝕨</span></code>, starting at each possible index in order.</p>
<pre> <span class='Number'>5</span><span class='Function'>↕</span><span class='String'>&quot;abcdefg&quot;</span>
-abcde
-bcdef
-cdefg
+β”Œβ”€
+β•΅"abcde
+ bcdef
+ cdefg
+ β”˜
</pre>
<p>There are <code><span class='Number'>1</span><span class='Function'>+</span><span class='Paren'>(</span><span class='Function'>β‰ </span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-</span><span class='Value'>𝕨</span></code>, or <code><span class='Paren'>(</span><span class='Function'>β‰ </span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>Β¬</span><span class='Value'>𝕨</span></code>, of these sections, because the starting index must be at least <code><span class='Number'>0</span></code> and at most <code><span class='Paren'>(</span><span class='Function'>β‰ </span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-</span><span class='Value'>𝕨</span></code>. Another way to find this result is to look at the number of cells in or before a given slice: there are always <code><span class='Value'>𝕨</span></code> in the slice and there are only <code><span class='Function'>β‰ </span><span class='Value'>𝕩</span></code> in total, so the number of slices is the range spanned by these two endpoints.</p>
<p>You can take a slice of an array <code><span class='Value'>𝕩</span></code> that has length <code><span class='Value'>l</span></code> and starts at index <code><span class='Value'>i</span></code> using <code><span class='Value'>l</span><span class='Function'>↑</span><span class='Value'>i</span><span class='Function'>↓</span><span class='Value'>𝕩</span></code> or <code><span class='Value'>l</span><span class='Function'>↑</span><span class='Value'>i</span><span class='Function'>⌽</span><span class='Value'>𝕩</span></code>. The <a href="prefixes.html">Prefixes</a> function returns all the slices that end at the end of the array (<code><span class='Paren'>(</span><span class='Function'>β‰ </span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>=</span><span class='Value'>i</span><span class='Function'>+</span><span class='Value'>l</span></code>), and Suffixes gives the slices that start at the beginning (<code><span class='Value'>i</span><span class='Function'>=</span><span class='Number'>0</span></code>). Windows gives yet another collection of slices: the ones that have a fixed length <code><span class='Value'>l</span><span class='Function'>=</span><span class='Value'>𝕨</span></code>. Selecting one cell from its result gives you the slice starting at that cell's index:</p>
<pre> <span class='Number'>2</span><span class='Function'>⊏</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>&quot;abcdefg&quot;</span>
-cdefg
+"cdefg"
<span class='Number'>5</span><span class='Function'>↑</span><span class='Number'>2</span><span class='Function'>↓</span><span class='String'>&quot;abcdefg&quot;</span>
-cdefg
+"cdefg"
</pre>
<p>Windows differs from Prefixes and Suffixes in that it doesn't add a layer of nesting (it doesn't enclose each slice). This is possible because the slices have a fixed size.</p>
<h3 id="multiple-dimensions">Multiple dimensions</h3>
<p>The above description applies to a higher-rank right argument. As an example, we'll look at two-row slices of a shape <code><span class='Number'>3</span><span class='Ligature'>β€Ώ</span><span class='Number'>4</span></code> array. For convenience, we will enclose each slice. Note that slices always have the same rank as the argument array.</p>
<pre> <span class='Function'>&lt;</span><span class='Modifier2'>βŽ‰</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Function'>↕</span><span class='String'>&quot;0123&quot;</span><span class='Function'>∾</span><span class='String'>&quot;abcd&quot;</span><span class='Function'>≍</span><span class='String'>&quot;ABCD&quot;</span>
-β”Œβ”€β”€β”€β”€β”¬β”€β”€β”€β”€β”
-β”‚0123β”‚abcdβ”‚
-β”‚abcdβ”‚ABCDβ”‚
-β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”˜
+β”Œβ”€
+Β· β”Œβ”€ β”Œβ”€
+ β•΅"0123 β•΅"abcd
+ abcd ABCD
+ β”˜ β”˜
+ β”˜
</pre>
<p>Passing a list as the left argument to Windows takes slices along any number of leading axes. Here are all the shape <code><span class='Number'>2</span><span class='Ligature'>β€Ώ</span><span class='Number'>2</span></code> slices:</p>
<pre> <span class='Function'>&lt;</span><span class='Modifier2'>βŽ‰</span><span class='Number'>2</span> <span class='Number'>2</span><span class='Ligature'>β€Ώ</span><span class='Number'>2</span><span class='Function'>↕</span><span class='String'>&quot;0123&quot;</span><span class='Function'>∾</span><span class='String'>&quot;abcd&quot;</span><span class='Function'>≍</span><span class='String'>&quot;ABCD&quot;</span>
-β”Œβ”€β”€β”¬β”€β”€β”¬β”€β”€β”
-β”‚01β”‚12β”‚23β”‚
-β”‚abβ”‚bcβ”‚cdβ”‚
-β”œβ”€β”€β”Όβ”€β”€β”Όβ”€β”€β”€
-β”‚abβ”‚bcβ”‚cdβ”‚
-β”‚ABβ”‚BCβ”‚CDβ”‚
-β””β”€β”€β”΄β”€β”€β”΄β”€β”€β”˜
+β”Œβ”€
+β•΅ β”Œβ”€ β”Œβ”€ β”Œβ”€
+ β•΅"01 β•΅"12 β•΅"23
+ ab bc cd
+ β”˜ β”˜ β”˜
+ β”Œβ”€ β”Œβ”€ β”Œβ”€
+ β•΅"ab β•΅"bc β•΅"cd
+ AB BC CD
+ β”˜ β”˜ β”˜
+ β”˜
</pre>
<p>The slices are naturally arranged along multiple dimensions according to their starting index. Once again the equivalence <code><span class='Value'>i</span><span class='Function'>⊏</span><span class='Value'>l</span><span class='Function'>↕</span><span class='Value'>x</span></code> ←→ <code><span class='Value'>l</span><span class='Function'>↑</span><span class='Value'>i</span><span class='Function'>↓</span><span class='Value'>x</span></code> holds, provided <code><span class='Value'>i</span></code> and <code><span class='Value'>l</span></code> have the same length.</p>
<p>If the left argument has length <code><span class='Number'>0</span></code>, then the argument is not sliced along any dimensions. The only slice that resultsβ€”the entire argumentβ€”is then arranged along an additional zero dimensions. In the end, the result is the same as the argument.</p>
@@ -44,13 +51,15 @@ cdefg
<h2 id="symmetry">Symmetry</h2>
<p>Let's look at an earlier example, along with its transpose.</p>
<pre> <span class='Brace'>{</span><span class='Bracket'>⟨</span><span class='Value'>𝕩</span><span class='Separator'>,</span><span class='Function'>⍉</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Brace'>}</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>&quot;abcdefg&quot;</span>
-β”Œβ”€β”€β”€β”€β”€β”¬β”€β”€β”€β”
-β”‚abcdeβ”‚abcβ”‚
-β”‚bcdefβ”‚bcdβ”‚
-β”‚cdefgβ”‚cdeβ”‚
-β”‚ β”‚defβ”‚
-β”‚ β”‚efgβ”‚
-β””β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”˜
+β”Œβ”€
+Β· β”Œβ”€ β”Œβ”€
+ β•΅"abcde β•΅"abc
+ bcdef bcd
+ cdefg cde
+ β”˜ def
+ efg
+ β”˜
+ β”˜
</pre>
<p>Although the two arrays have different shapes, they are identical where they overlap.</p>
<pre> <span class='Function'>≑</span><span class='Modifier2'>β—‹</span><span class='Paren'>(</span><span class='Number'>3</span><span class='Ligature'>β€Ώ</span><span class='Number'>3</span><span class='Modifier2'>⊸</span><span class='Function'>↑</span><span class='Paren'>)</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span><span class='Number'>5</span><span class='Function'>↕</span><span class='String'>&quot;abcdefg&quot;</span>
@@ -67,16 +76,16 @@ cdefg
<h2 id="applications">Applications</h2>
<p>Windows can be followed up with a reduction on each slice to give a windowed reduction. Here we take running sums of 3 values.</p>
<pre> <span class='Function'>+</span><span class='Modifier'>´˘</span><span class='Number'>3</span><span class='Function'>↕</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>0</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Separator'>,</span><span class='Number'>3</span><span class='Bracket'>⟩</span>
-8β€Ώ7β€Ώ5β€Ώ8
+⟨ 8 7 5 8 ⟩
</pre>
<p>A common task is to pair elements, with an initial or final element so the total length stays the same. This can also be done with a pairwise reduction, but another good way (and more performant without special support in the interpreter) is to add the element and then use windows matching the original length. Here both methods are used to invert <code><span class='Function'>+</span><span class='Modifier'>`</span></code>, which requires we take pairwise differences starting at initial value 0.</p>
<pre> <span class='Function'>-</span><span class='Modifier'>˜´˘</span><span class='Number'>2</span><span class='Function'>↕</span><span class='Number'>0</span><span class='Function'>∾</span> <span class='Function'>+</span><span class='Modifier'>`</span> <span class='Number'>3</span><span class='Ligature'>β€Ώ</span><span class='Number'>2</span><span class='Ligature'>β€Ώ</span><span class='Number'>1</span><span class='Ligature'>β€Ώ</span><span class='Number'>1</span>
-3β€Ώ2β€Ώ1β€Ώ1
+⟨ 3 2 1 1 ⟩
<span class='Paren'>((</span><span class='Function'>-</span><span class='Modifier'>˜´</span><span class='Function'>&lt;</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Number'>0</span><span class='Function'>∾⊒</span><span class='Paren'>)</span> <span class='Function'>+</span><span class='Modifier'>`</span> <span class='Number'>3</span><span class='Ligature'>β€Ώ</span><span class='Number'>2</span><span class='Ligature'>β€Ώ</span><span class='Number'>1</span><span class='Ligature'>β€Ώ</span><span class='Number'>1</span>
-3β€Ώ2β€Ώ1β€Ώ1
+⟨ 3 2 1 1 ⟩
</pre>
<p>This method extends to any number of initial elements. We can modify the running sum above to keep the length constant by starting with two zeros.</p>
<pre> <span class='Paren'>((</span><span class='Function'>+</span><span class='Modifier'>Β΄</span><span class='Function'>&lt;</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Function'>≠↕</span><span class='Paren'>(</span><span class='Number'>2</span><span class='Function'>β₯Š</span><span class='Number'>0</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>∾</span><span class='Paren'>)</span> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>6</span><span class='Separator'>,</span><span class='Number'>0</span><span class='Separator'>,</span><span class='Number'>1</span><span class='Separator'>,</span><span class='Number'>4</span><span class='Separator'>,</span><span class='Number'>3</span><span class='Bracket'>⟩</span>
-2β€Ώ8β€Ώ8β€Ώ7β€Ώ5β€Ώ8
+⟨ 2 8 8 7 5 8 ⟩
</pre>