aboutsummaryrefslogtreecommitdiff
path: root/docs/doc/transpose.html
diff options
context:
space:
mode:
authorMarshall Lochbaum <mwlochbaum@gmail.com>2020-07-18 18:26:52 -0400
committerMarshall Lochbaum <mwlochbaum@gmail.com>2020-07-18 18:29:59 -0400
commit229e2cd2f5c78b13c483a8559dead2c8f31d8e42 (patch)
tree9d6a1ff0100bda7632948987352b3d6614c3eeb5 /docs/doc/transpose.html
parent010b97c8cf346dfeafc289ae66f77e8c61cd9865 (diff)
Terminology changes: subject, 1/2-modifier, Box/Unbox to Enclose/Merge, blocks
Diffstat (limited to 'docs/doc/transpose.html')
-rw-r--r--docs/doc/transpose.html32
1 files changed, 16 insertions, 16 deletions
diff --git a/docs/doc/transpose.html b/docs/doc/transpose.html
index d2629546..43b51b48 100644
--- a/docs/doc/transpose.html
+++ b/docs/doc/transpose.html
@@ -2,7 +2,7 @@
<h1 id="transpose">Transpose</h1>
<p>As in APL, Transpose (<code><span class='Function'>⍉</span></code>) is a tool for rearranging the axes of an array. BQN's version is tweaked to align better with the leading axis model and make common operations easier.</p>
<h2 id="monadic-transpose">Monadic Transpose</h2>
-<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Composition'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'>&lt;</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Composition'>∘</span><span class='Function'>×</span><span class='Composition'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p>
+<p>Transposing a matrix exchanges its axes, mirroring it across the diagonal. APL extends the function to any rank by reversing all axes, but this generalization isn't very natural and is almost never used. The main reason for it is to maintain the equivalence <code><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Value'>a</span> <span class='Function'>MP</span><span class='Modifier2'>⌾</span><span class='Function'>⍉</span> <span class='Value'>b</span></code>, where <code><span class='Function'>MP</span> <span class='Gets'>←</span> <span class='Paren'>(</span><span class='Function'>+</span><span class='Modifier'>´</span><span class='Function'>&lt;</span><span class='Modifier'>˘</span><span class='Paren'>)</span><span class='Modifier2'>∘</span><span class='Function'>×</span><span class='Modifier2'>⎉</span><span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>∞</span></code> is the generalized matrix product. But even here APL's Transpose is suspect. It does much more work than it needs to, as we'll see.</p>
<p>BQN's transpose takes the first axis of its argument and moves it to the end.</p>
<pre> <span class='Function'>≢</span> <span class='Value'>a23456</span> <span class='Gets'>←</span> <span class='Function'>↕</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>6</span>
<span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span>
@@ -11,7 +11,7 @@
</pre>
<p>On the argument's ravel, this looks like a simple 2-dimensional transpose: one axis is exchanged with a compound axis made up of the other axes. Here we transpose a rank 3 matrix:</p>
<pre> <span class='Value'>a322</span> <span class='Gets'>←</span> <span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Function'>⥊↕</span><span class='Number'>12</span>
- <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'>&lt;</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span>
+ <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'>&lt;</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>a322</span>
<span class='Value'>┌</span>
<span class='Value'>┌</span> <span class='Value'>┌</span>
<span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span>
@@ -26,7 +26,7 @@
<span class='Value'>┘</span>
</pre>
<p>But, reading in ravel order, the argument and result have exactly the same element ordering as for the rank 2 matrix <code><span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span></code>:</p>
-<pre> <span class='Function'>≍</span><span class='Composition'>○</span><span class='Function'>&lt;</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span>
+<pre> <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'>&lt;</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Function'>⥊</span><span class='Modifier'>˘</span> <span class='Value'>a322</span>
<span class='Value'>┌</span>
<span class='Value'>┌</span> <span class='Value'>┌</span>
<span class='Number'>0</span> <span class='Number'>1</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>0</span> <span class='Number'>4</span> <span class='Number'>8</span>
@@ -36,27 +36,27 @@
<span class='Value'>┘</span>
<span class='Value'>┘</span>
</pre>
-<p>To exchange multiple axes, use the Power operator. Like Rotate, a negative power will move axes in the other direction. In particular, to move the last axis to the front, use Inverse (as you might expect, this exactly inverts <code><span class='Function'>⍉</span></code>).</p>
-<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Composition'>⍟</span><span class='Number'>3</span> <span class='Value'>a23456</span>
+<p>To exchange multiple axes, use the Power modifier. Like Rotate, a negative power will move axes in the other direction. In particular, to move the last axis to the front, use Inverse (as you might expect, this exactly inverts <code><span class='Function'>⍉</span></code>).</p>
+<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Number'>3</span> <span class='Value'>a23456</span>
<span class='Value'>[</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Value'>]</span>
<span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span> <span class='Value'>a23456</span>
<span class='Value'>[</span> <span class='Number'>6</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span>
</pre>
-<p>In fact, we have <code><span class='Function'>≢⍉</span><span class='Composition'>⍟</span><span class='Value'>k</span> <span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>k</span><span class='Function'>⌽≢</span><span class='Value'>a</span></code> for any number <code><span class='Value'>k</span></code> and array <code><span class='Value'>a</span></code>.</p>
-<p>To move axes other than the first, use the Rank operator in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>&gt;</span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'>&lt;</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p>
-<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Composition'>⎉</span><span class='Number'>3</span> <span class='Value'>a23456</span>
+<p>In fact, we have <code><span class='Function'>≢⍉</span><span class='Modifier2'>⍟</span><span class='Value'>k</span> <span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>k</span><span class='Function'>⌽≢</span><span class='Value'>a</span></code> for any number <code><span class='Value'>k</span></code> and array <code><span class='Value'>a</span></code>.</p>
+<p>To move axes other than the first, use the Rank modifier in order to leave initial axes untouched. A rank of <code><span class='Value'>k</span><span class='Function'>&gt;</span><span class='Number'>0</span></code> transposes only the last <code><span class='Value'>k</span></code> axes while a rank of <code><span class='Value'>k</span><span class='Function'>&lt;</span><span class='Number'>0</span></code> ignores the first <code><span class='Function'>|</span><span class='Value'>k</span></code> axes.</p>
+<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier2'>⎉</span><span class='Number'>3</span> <span class='Value'>a23456</span>
<span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Number'>4</span> <span class='Value'>]</span>
</pre>
<p>And of course, Rank and Power can be combined to do more complicated transpositions: move a set of contiguous axes with any starting point and length to the end.</p>
-<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⎉</span><span class='Number'>¯1</span> <span class='Value'>a23456</span>
+<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⎉</span><span class='Number'>¯1</span> <span class='Value'>a23456</span>
<span class='Value'>[</span> <span class='Number'>2</span> <span class='Number'>6</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>5</span> <span class='Value'>]</span>
</pre>
<p>Using these forms, we can state BQN's generalized matrix product swapping rule:</p>
-<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Composition'>⍟</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⊸</span><span class='Function'>MP</span><span class='Composition'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span>
+<pre><span class='Value'>a</span> <span class='Function'>MP</span> <span class='Value'>b</span> <span class='Gets'>←→</span> <span class='Function'>⍉</span><span class='Modifier2'>⍟</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>a</span><span class='Paren'>)</span> <span class='Value'>a</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⊸</span><span class='Function'>MP</span><span class='Modifier2'>⟜</span><span class='Function'>⍉</span> <span class='Value'>b</span>
</pre>
<p>Certainly not as concise as APL's version, but not a horror either. BQN's rule is actually more parsimonious in that it only performs the axis exchanges necessary for the computation: it moves the two axes that will be paired with the matrix product into place before the product, and directly exchanges all axes afterwards. Each of these steps is equivalent in terms of data movement to a matrix transpose, the simplest nontrivial transpose to perform. Also remember that for two-dimensional matrices both kinds of transposition are the same, and APL's rule holds in BQN.</p>
<p>Axis permutations of the types we've shown generate the complete permutation group on any number of axes, so you could produce any transposition you want with the right sequence of monadic transpositions with Rank. However, this can be unintuitive and tedious. What if you want to transpose the first three axes, leaving the rest alone? With monadic Transpose you have to send some axes to the end, then bring them back to the beginning. For example [following four or five failed tries]:</p>
-<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Composition'>⎉</span><span class='Number'>¯2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes
+<pre> <span class='Function'>≢</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Modifier2'>⎉</span><span class='Number'>¯2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes
</span><span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span>
</pre>
<p>In a case like this BQN's Dyadic transpose is much easier.</p>
@@ -67,7 +67,7 @@
<span class='Function'>≢</span> <span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>0</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Don't worry too much about this case though
</span><span class='Value'>[</span> <span class='Number'>5</span> <span class='Number'>2</span> <span class='Number'>3</span> <span class='Value'>]</span>
</pre>
-<p>Since this kind of rearrangement can be counterintuitive, it's often easier to use <code><span class='Function'>⍉</span><span class='Modifier'>⁼</span></code> when specifying all axes. If <code><span class='Value'>p</span><span class='Function'>≡</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>a</span></code>, then we have <code><span class='Function'>≢</span><span class='Value'>p</span><span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>p</span><span class='Function'>⊏≢</span><span class='Value'>a</span></code>.</p>
+<p>Since this kind of rearrangement can be counterintuitive, it's often easier to use <code><span class='Function'>⍉</span><span class='Modifier'>⁼</span></code> when specifying all axes. If <code><span class='Value'>p</span><span class='Function'>≡</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>a</span></code>, then we have <code><span class='Function'>≢</span><span class='Value'>p</span><span class='Function'>⍉</span><span class='Modifier'>⁼</span><span class='Value'>a</span> <span class='Gets'>←→</span> <span class='Value'>p</span><span class='Function'>⊏≢</span><span class='Value'>a</span></code>.</p>
<pre> <span class='Function'>≢</span> <span class='Number'>1</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>4</span> <span class='Function'>⍉</span><span class='Modifier'>⁼</span> <span class='Value'>a23456</span>
<span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>5</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>6</span> <span class='Value'>]</span>
</pre>
@@ -79,10 +79,10 @@
<pre> <span class='Function'>≢</span> <span class='Number'>2</span> <span class='Function'>⍉</span> <span class='Value'>a23456</span> <span class='Comment'># Restrict Transpose to the first three axes
</span><span class='Value'>[</span> <span class='Number'>3</span> <span class='Number'>4</span> <span class='Number'>2</span> <span class='Number'>5</span> <span class='Number'>6</span> <span class='Value'>]</span>
</pre>
-<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a &quot;default&quot; left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>.</p>
+<p>Finally, it's worth noting that, as monadic Transpose moves the first axis to the end, it's equivalent to dyadic Transpose with a &quot;default&quot; left argument: <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>.</p>
<h2 id="definitions">Definitions</h2>
<p>Here we define the two valences of Transpose more precisely.</p>
-<p>A non-array right argument to Transpose is always boxed to get a scalar array before doing anything else.</p>
-<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Composition'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Composition'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p>
-<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Composition'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'>&lt;</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Composition'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p>
+<p>A non-array right argument to Transpose is always enclosed to get a scalar array before doing anything else.</p>
+<p>Monadic transpose is identical to <code><span class='Paren'>(</span><span class='Function'>≠</span><span class='Modifier2'>∘</span><span class='Function'>≢-</span><span class='Number'>1</span><span class='Modifier'>˜</span><span class='Paren'>)</span><span class='Modifier2'>⊸</span><span class='Function'>⍉</span></code>, except that for scalar arguments it returns the array unchanged rather than giving an error.</p>
+<p>In Dyadic transpose, the left argument is a number or numeric array of rank 1 or less, and <code><span class='Value'>𝕨</span><span class='Function'>≤</span><span class='Modifier2'>○</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span></code>. Define the result rank <code><span class='Value'>r</span><span class='Gets'>←</span><span class='Paren'>(</span><span class='Function'>≠≢</span><span class='Value'>𝕩</span><span class='Paren'>)</span><span class='Function'>-+</span><span class='Modifier'>´</span><span class='Function'>¬∊</span><span class='Value'>𝕨</span></code> to be the argument rank minus the number of duplicate entries in the left argument. We require <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Value'>𝕨</span><span class='Function'>&lt;</span><span class='Value'>r</span></code>. Bring <code><span class='Value'>𝕨</span></code> to full length by appending the missing indices: <code><span class='Value'>𝕨</span><span class='Function'>∾</span><span class='Gets'>↩</span><span class='Value'>𝕨</span><span class='Paren'>(</span><span class='Function'>¬</span><span class='Modifier2'>∘</span><span class='Function'>∊</span><span class='Modifier'>˜</span><span class='Function'>/⊢</span><span class='Paren'>)</span><span class='Function'>↕</span><span class='Value'>r</span></code>. Now the result shape is defined to be <code><span class='Function'>⌊</span><span class='Modifier'>´¨</span><span class='Value'>𝕨</span><span class='Function'>⊔≢</span><span class='Value'>𝕩</span></code>. Element <code><span class='Value'>i</span><span class='Function'>⊑</span><span class='Value'>z</span></code> of the result <code><span class='Value'>z</span></code> is element <code><span class='Paren'>(</span><span class='Value'>𝕨</span><span class='Function'>⊏</span><span class='Value'>i</span><span class='Paren'>)</span><span class='Function'>⊑</span><span class='Value'>𝕩</span></code> of the argument.</p>