aboutsummaryrefslogtreecommitdiff
path: root/docs/doc/order.html
diff options
context:
space:
mode:
authorMarshall Lochbaum <mwlochbaum@gmail.com>2021-07-07 19:59:57 -0400
committerMarshall Lochbaum <mwlochbaum@gmail.com>2021-07-07 22:20:25 -0400
commitdf6d6a0fa85c07c67eaa40a097953e3290f5d356 (patch)
treed68b9091fea51051bfd97e5cb4f3d33bdfe99fbf /docs/doc/order.html
parent00d29478d5a1b74c77643deef8f48699dacead3a (diff)
Continued editing and links
Diffstat (limited to 'docs/doc/order.html')
-rw-r--r--docs/doc/order.html8
1 files changed, 4 insertions, 4 deletions
diff --git a/docs/doc/order.html b/docs/doc/order.html
index e9e5931c..24db519a 100644
--- a/docs/doc/order.html
+++ b/docs/doc/order.html
@@ -5,7 +5,7 @@
</head>
<div class="nav"><a href="https://github.com/mlochbaum/BQN">BQN</a> / <a href="../index.html">main</a> / <a href="index.html">doc</a></div>
<h1 id="ordering-functions">Ordering functions</h1>
-<p>BQN has six functions that order arrays as part of their operation (the comparison functions <code><span class='Function'>≤&lt;&gt;≥</span></code> only order atoms, so they aren't included). These come in three pairs, where one of each pair uses an ascending ordering and the other uses a descending ordering.</p>
+<p>BQN has six functions that order arrays as part of their operation (the <a href="arithmetic.html#comparisons">comparison functions</a> <code><span class='Function'>≤&lt;&gt;≥</span></code> only order atoms, so they aren't included). These come in three pairs, where one of each pair uses an ascending ordering and the other uses a descending ordering.</p>
<ul>
<li><code><span class='Function'>∨∧</span></code>, Sort, rearranges the argument to order it</li>
<li><code><span class='Function'>⍒⍋</span></code>, Grade, outputs the permutation that Sort would use to rearrange it</li>
@@ -21,7 +21,7 @@
<span class='Function'>∨</span> <span class='String'>&quot;δαβγ&quot;</span>
"δγβα"
</pre>
-<p>Sort Down always <a href="match.html">matches</a> Sort Up reversed, <code><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span></code>. The reason for this is that BQN's array ordering is a <a href="https://en.wikipedia.org/wiki/Total_order">total order</a>, meaning that if one array doesn't come earlier or later that another array in the ordering then the two arrays match. Since any two non-matching argument cells are strictly ordered, they will have one ordering in <code><span class='Function'>∧</span></code> and the opposite ordering in <code><span class='Function'>∨</span></code>. With the reverse, any pair of non-matching cells are ordered the same way in <code><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span></code> and <code><span class='Function'>∨</span></code>. Since these two results have the same major cells in the same order, they match. However, note that the results will not always behave identically because Match doesn't take fill elements into account (if you're curious, take a look at <code><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Function'>∨</span><span class='Bracket'>⟨</span><span class='Function'>↕</span><span class='Number'>0</span><span class='Separator'>,</span><span class='String'>&quot;&quot;</span><span class='Bracket'>⟩</span></code> versus <code><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span><span class='Bracket'>⟨</span><span class='Function'>↕</span><span class='Number'>0</span><span class='Separator'>,</span><span class='String'>&quot;&quot;</span><span class='Bracket'>⟩</span></code>).</p>
+<p>Sort Down always <a href="match.html">matches</a> Sort Up <a href="reverse.html">reversed</a>, <code><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span></code>. The reason for this is that BQN's array ordering is a <a href="https://en.wikipedia.org/wiki/Total_order">total order</a>, meaning that if one array doesn't come earlier or later that another array in the ordering then the two arrays match. Since any two non-matching argument cells are strictly ordered, they will have one ordering in <code><span class='Function'>∧</span></code> and the opposite ordering in <code><span class='Function'>∨</span></code>. With the reverse, any pair of non-matching cells are ordered the same way in <code><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span></code> and <code><span class='Function'>∨</span></code>. Since these two results have the same major cells in the same order, they match. However, note that the results will not always behave identically because Match doesn't take fill elements into account (if you're curious, take a look at <code><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Function'>∨</span><span class='Bracket'>⟨</span><span class='Function'>↕</span><span class='Number'>0</span><span class='Separator'>,</span><span class='String'>&quot;&quot;</span><span class='Bracket'>⟩</span></code> versus <code><span class='Function'>⊑</span><span class='Modifier'>¨</span><span class='Function'>⌽</span><span class='Modifier2'>∘</span><span class='Function'>∧</span><span class='Bracket'>⟨</span><span class='Function'>↕</span><span class='Number'>0</span><span class='Separator'>,</span><span class='String'>&quot;&quot;</span><span class='Bracket'>⟩</span></code>).</p>
<h2 id="grade">Grade</h2>
<p><em>See the <a href="https://aplwiki.com/wiki/Grade">APL Wiki page</a> for a few more examples. BQN only has the monadic form.</em></p>
<p>Grade is more abstract than Sort. Rather than rearranging the argument's cells immediately, it returns a list of indices (more precisely, a permutation) giving the ordering that would sort them.</p>
@@ -86,7 +86,7 @@
<h2 id="bins">Bins</h2>
<p><em>There's also an <a href="https://aplwiki.com/wiki/Interval_Index">APL Wiki page</a> on this function, but be careful as the Dyalog version has subtle differences.</em></p>
<p>The two Bins functions are written with the same symbols <code><span class='Function'>⍋</span></code> and <code><span class='Function'>⍒</span></code> as Grade, but take two arguments instead of one. More complicated? A little, but once you understand Bins you'll find that it's a basic concept that shows up in the real world all the time.</p>
-<p>Bins behaves like a dyadic search function: it looks up cells from the right argument relative to major cells of the left argument. However, there's an extra requirement: the left argument to Bins is already sorted according to whichever ordering is used. If it isn't, you'll get an error.</p>
+<p>Bins behaves like a <a href="search.html">search function</a> with respect to rank: it looks up cells from <code><span class='Value'>𝕩</span></code> relative to major cells of <code><span class='Value'>𝕨</span></code>. However, there's an extra requirement: the left argument to Bins is already sorted according to whichever ordering is used. If it isn't, you'll get an error.</p>
<a class="replLink" title="Open in the REPL" target="_blank" href="https://mlochbaum.github.io/BQN/try.html#code=NeKAvzbigL8y4oC/NOKAvzEg4o2LIDMKMOKAvzPigL804oC/N+KAvzkg4o2SIDM=">↗️</a><pre> <span class='Number'>5</span><span class='Ligature'>‿</span><span class='Number'>6</span><span class='Ligature'>‿</span><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>1</span> <span class='Function'>⍋</span> <span class='Number'>3</span>
ERROR
<span class='Number'>0</span><span class='Ligature'>‿</span><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>4</span><span class='Ligature'>‿</span><span class='Number'>7</span><span class='Ligature'>‿</span><span class='Number'>9</span> <span class='Function'>⍒</span> <span class='Number'>3</span>
@@ -103,7 +103,7 @@ ERROR
<h2 id="array-ordering">Array ordering</h2>
<p>Most of the time you won't need to worry about the details of how BQN arrays are ordered. It's documented here because, well, that's what documentation does.</p>
<p>The array ordering defines some arrays to be smaller or larger than others. All of the &quot;Up&quot; ordering functions use this ordering directly, so that smaller arrays come earlier, and the &quot;Down&quot; ones use the opposite ordering, with larger arrays coming earlier. For arrays consisting only of characters and numbers, with arbitrary nesting, the ordering is always defined. If an array contains an operation, trying to order it relative to another array might give an error. If comparing two arrays succeeds, there are three possibilities: the first array is smaller, the second is smaller, or the two arrays <a href="match.html">match</a>.</p>
-<p>Comparing two atoms is defined to work the same way as the comparison functions <code><span class='Function'>≤&lt;&gt;≥</span></code>. Numbers come earlier than characters and otherwise these two types are ordered in the obvious way. To compare an atom to an array, the atom enclosing and then compared with the array ordering defined below. The result of this comparison is used except when the two arrays match: in that case, the atom is considered smaller.</p>
+<p>Comparing two atoms is defined to work the same way as the <a href="arithmetic.html#comparisons">comparison functions</a> <code><span class='Function'>≤&lt;&gt;≥</span></code>. Numbers come earlier than characters and otherwise these two types are ordered in the obvious way. To compare an atom to an array, the atom enclosing and then compared with the array ordering defined below. The result of this comparison is used except when the two arrays match: in that case, the atom is considered smaller.</p>
<p>Two arrays of the same shape are compared by comparing all their corresponding elements, in index order. This comparison can stop at the first pair of different elements (which allows later elements to contain operations without causing an error). If any elements were different, then they decide the result of the comparison. If all the elements matched, then by definition the two arrays match.</p>
<p>The principle for arrays of different shapes is the same, but there are two factors that need to be taken into account. First, it's not obvious any more what it means to compare corresponding elements—what's the correspondence? Second, the two arrays can't match because they have different shapes. So even if all elements end up matching one of them needs to come earlier.</p>
<p>BQN's <em>array ordering</em> is an extension of the number and character ordering given by <code><span class='Function'>≤</span></code> to arrays. In this system, any two arrays consisting of only numbers and characters for atoms can be compared with each other. Furthermore, some arrays that contain incomparable atoms (operations) might be comparable, if the result of the comparison can be decided before reaching these atoms. Array ordering does not depend on the fill elements for the two arguments.</p>