diff options
| author | Marshall Lochbaum <mwlochbaum@gmail.com> | 2020-09-20 13:50:30 -0400 |
|---|---|---|
| committer | Marshall Lochbaum <mwlochbaum@gmail.com> | 2020-09-20 13:50:30 -0400 |
| commit | f910f64594053011efd57a97100ad19ee1e39fb4 (patch) | |
| tree | 33550f94bf4c2ea035e73d6e37395de299e4ab11 /docs/doc/couple.html | |
| parent | bfc6eb1fcc5408ecf415224d47494a4005330da8 (diff) | |
Use "unit" or "rank-0" instead of "scalar"
Diffstat (limited to 'docs/doc/couple.html')
| -rw-r--r-- | docs/doc/couple.html | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/docs/doc/couple.html b/docs/doc/couple.html index 8a94fe4e..ee145b54 100644 --- a/docs/doc/couple.html +++ b/docs/doc/couple.html @@ -65,7 +65,7 @@ <span class='Function'>∾</span> <span class='Function'>⥊</span> <span class='Function'>⥊</span><span class='Modifier'>¨</span> <span class='Value'>a</span> "ABrstABuvwABxyzCDrstCDuvwCDxyz" </pre> -<p>The way this happens, and the constraint that all inner arrays have the same shape, is closely connected to the concept of an array, and like Table <code><span class='Modifier'>⌜</span></code>, Merge might be considered a fundamental way to build up multidimensional arrays from lists. In both cases scalars are somewhat special. They are the identity element of a function with Table, and can be produced by Merge inverse, <code><span class='Function'>></span><span class='Modifier'>⁼</span></code> <strong>on a list</strong>, which forces either the outer or inner shape to be empty (BQN chooses <code><span class='Function'>></span><span class='Modifier'>⁼</span></code> to be <code><span class='Function'><</span></code>, but only on an array, as <code><span class='Function'>></span></code> cannot produce non-arrays). Merge has another catch as well: it cannot produce arrays with a <code><span class='Number'>0</span></code> in the shape, except at the end, without some sort of prototype system.</p> +<p>The way this happens, and the constraint that all inner arrays have the same shape, is closely connected to the concept of an array, and like Table <code><span class='Modifier'>⌜</span></code>, Merge might be considered a fundamental way to build up multidimensional arrays from lists. In both cases rank-0 or unit arrays are somewhat special. They are the identity element of a function with Table, and can be produced by Merge inverse, <code><span class='Function'>></span><span class='Modifier'>⁼</span></code> <strong>on a list</strong>, which forces either the outer or inner shape to be empty (BQN chooses <code><span class='Function'>></span><span class='Modifier'>⁼</span></code> to be <code><span class='Function'><</span></code>, but only on an array, as <code><span class='Function'>></span></code> cannot produce non-arrays). Merge has another catch as well: it cannot produce arrays with a <code><span class='Number'>0</span></code> in the shape, except at the end, without some sort of prototype system.</p> <a class="replLink" title="Open in the REPL" target="_blank" href="https://mlochbaum.github.io/BQN/try.html#code=4oqiIGUg4oaQIOKfqOKfqcKoIOKGlTMK4omiID4gZQriiaIgPiA+IGU=&run">↗️</a><pre> <span class='Function'>⊢</span> <span class='Value'>e</span> <span class='Gets'>←</span> <span class='Bracket'>⟨⟩</span><span class='Modifier'>¨</span> <span class='Function'>↕</span><span class='Number'>3</span> ⟨ ⟨⟩ ⟨⟩ ⟨⟩ ⟩ <span class='Function'>≢</span> <span class='Function'>></span> <span class='Value'>e</span> @@ -74,8 +74,8 @@ ⟨ 3 0 ⟩ </pre> <p>Above we start with a list of three empty arrays. After merging once we get a shape <code><span class='Number'>3</span><span class='Ligature'>‿</span><span class='Number'>0</span></code> array, sure, but what happens next? The shape added by another merge is the shared shape of that array's elements—and there aren't any! If the nested list kept some type information around then we might know, but extra type information is essentially how lists pretend to be arrays. True dynamic lists simply can't represent multidimensional arrays with a <code><span class='Number'>0</span></code> in the middle of the shape. In this sense, arrays are a richer model than nested lists.</p> -<h2 id="coupling-scalars">Coupling scalars</h2> -<p>A note on the topic of Solo and Couple applied to scalars. As always, one axis will be added, so that the result is a list (strangely, J's <a href="https://code.jsoftware.com/wiki/Vocabulary/commaco#dyadic">laminate</a> differs from Couple in this one case, as it will add an axis to get a shape <code><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>1</span></code> result). For Solo, this is interchangeable with Deshape (<code><span class='Function'>⥊</span></code>), and either primitive might be chosen for stylistic reasons. For Couple, it is equivalent to Join-to (<code><span class='Function'>∾</span></code>), but this is an irregular form of Join-to because it is the only case where Join-to adds an axis to both arguments instead of just one. Couple should be preferred in this case.</p> +<h2 id="coupling-units">Coupling units</h2> +<p>A note on the topic of Solo and Couple applied to units. As always, one axis will be added, so that the result is a list (strangely, J's <a href="https://code.jsoftware.com/wiki/Vocabulary/commaco#dyadic">laminate</a> differs from Couple in this one case, as it will add an axis to get a shape <code><span class='Number'>2</span><span class='Ligature'>‿</span><span class='Number'>1</span></code> result). For Solo, this is interchangeable with Deshape (<code><span class='Function'>⥊</span></code>), and either primitive might be chosen for stylistic reasons. For Couple, it is equivalent to Join-to (<code><span class='Function'>∾</span></code>), but this is an irregular form of Join-to because it is the only case where Join-to adds an axis to both arguments instead of just one. Couple should be preferred in this case.</p> <p>The pair function, which creates a list from its arguments, can be written <code><span class='Function'>Pair</span> <span class='Gets'>←</span> <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'><</span></code>, while <code><span class='Function'>≍</span></code> in either valence is <code><span class='Function'>></span><span class='Modifier2'>∘</span><span class='Function'>Pair</span></code>. As an interesting consequence, <code><span class='Function'>≍</span> <span class='Gets'>←→</span> <span class='Function'>></span><span class='Modifier2'>∘</span><span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'><</span></code>, and the same relationship holds for <code><span class='Function'>Pair</span></code>.</p> <a class="replLink" title="Open in the REPL" target="_blank" href="https://mlochbaum.github.io/BQN/try.html#code=4p+oMiwz4p+pIOKJjeKXizwgImFiYyIgICMgUGFpciB0d28gdmFsdWVzCuKJjeKXizwgImFiYyIgICAgICAgICMgUGFpciBvbmUoPykgdmFsdWU=&run">↗️</a><pre> <span class='Bracket'>⟨</span><span class='Number'>2</span><span class='Separator'>,</span><span class='Number'>3</span><span class='Bracket'>⟩</span> <span class='Function'>≍</span><span class='Modifier2'>○</span><span class='Function'><</span> <span class='String'>"abc"</span> <span class='Comment'># Pair two values </span>⟨ ⟨ 2 3 ⟩ "abc" ⟩ @@ -83,6 +83,6 @@ </span>⟨ "abc" ⟩ </pre> <h2 id="definitions">Definitions</h2> -<p>As discussed above, <code><span class='Function'>≍</span></code> is equivalent to <code><span class='Function'>></span><span class='Brace'>{</span><span class='Bracket'>⟨</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Value'>;</span><span class='Bracket'>⟨</span><span class='Value'>𝕨</span><span class='Separator'>,</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Brace'>}</span></code>. To complete the picture we should describe Merge fully. Merge is defined on an array argument <code><span class='Value'>𝕩</span></code> such that there's some shape <code><span class='Value'>s</span></code> satisfying <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Function'>⥊</span><span class='Paren'>(</span><span class='Value'>s</span><span class='Function'>≡≢</span><span class='Paren'>)</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span></code>. If <code><span class='Value'>𝕩</span></code> is empty then any shape satisfies this expression; <code><span class='Value'>s</span></code> should be chosen based on known type information for <code><span class='Value'>𝕩</span></code> or otherwise assumed to be <code><span class='Bracket'>⟨⟩</span></code>. If <code><span class='Value'>s</span></code> is empty then <code><span class='Value'>𝕩</span></code> is allowed to contain atoms as well as array scalars, and these will be implicitly promoted to arrays by the <code><span class='Function'>⊑</span></code> indexing used later. We construct the result by combining the outer and inner axes of the argument with Table; since the outer axes come first they must correspond to the left argument and the inner axes must correspond to the right argument. <code><span class='Value'>𝕩</span></code> is a natural choice of left argument, and because no concrete array can be used, the right argument will be <code><span class='Function'>↕</span><span class='Value'>s</span></code>, the array of indices into any element of <code><span class='Value'>𝕩</span></code>. To get the appropriate element corresponding to a particular choice of index and element of <code><span class='Value'>𝕩</span></code> we should select using that index. The result of Merge is <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜⌜</span><span class='Function'>↕</span><span class='Value'>s</span></code>.</p> +<p>As discussed above, <code><span class='Function'>≍</span></code> is equivalent to <code><span class='Function'>></span><span class='Brace'>{</span><span class='Bracket'>⟨</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Value'>;</span><span class='Bracket'>⟨</span><span class='Value'>𝕨</span><span class='Separator'>,</span><span class='Value'>𝕩</span><span class='Bracket'>⟩</span><span class='Brace'>}</span></code>. To complete the picture we should describe Merge fully. Merge is defined on an array argument <code><span class='Value'>𝕩</span></code> such that there's some shape <code><span class='Value'>s</span></code> satisfying <code><span class='Function'>∧</span><span class='Modifier'>´</span><span class='Function'>⥊</span><span class='Paren'>(</span><span class='Value'>s</span><span class='Function'>≡≢</span><span class='Paren'>)</span><span class='Modifier'>¨</span><span class='Value'>𝕩</span></code>. If <code><span class='Value'>𝕩</span></code> is empty then any shape satisfies this expression; <code><span class='Value'>s</span></code> should be chosen based on known type information for <code><span class='Value'>𝕩</span></code> or otherwise assumed to be <code><span class='Bracket'>⟨⟩</span></code>. If <code><span class='Value'>s</span></code> is empty then <code><span class='Value'>𝕩</span></code> is allowed to contain atoms as well as unit arrays, and these will be implicitly promoted to arrays by the <code><span class='Function'>⊑</span></code> indexing used later. We construct the result by combining the outer and inner axes of the argument with Table; since the outer axes come first they must correspond to the left argument and the inner axes must correspond to the right argument. <code><span class='Value'>𝕩</span></code> is a natural choice of left argument, and because no concrete array can be used, the right argument will be <code><span class='Function'>↕</span><span class='Value'>s</span></code>, the array of indices into any element of <code><span class='Value'>𝕩</span></code>. To get the appropriate element corresponding to a particular choice of index and element of <code><span class='Value'>𝕩</span></code> we should select using that index. The result of Merge is <code><span class='Value'>𝕩</span><span class='Function'>⊑</span><span class='Modifier'>˜⌜</span><span class='Function'>↕</span><span class='Value'>s</span></code>.</p> <p>Given this definition we can also describe Rank (<code><span class='Modifier2'>⎉</span></code>) in terms of Each (<code><span class='Modifier'>¨</span></code>) and the simpler monadic function Enclose-Rank <code><span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Value'>k</span></code>. We assume effective ranks <code><span class='Value'>j</span></code> for <code><span class='Value'>𝕨</span></code> (if present) and <code><span class='Value'>k</span></code> for <code><span class='Value'>𝕩</span></code> have been computed. Then the correspondence is <code><span class='Value'>𝕨</span><span class='Function'>F</span><span class='Modifier2'>⎉</span><span class='Value'>k𝕩</span> <span class='Gets'>←→</span> <span class='Function'>></span><span class='Paren'>(</span><span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Value'>j𝕨</span><span class='Paren'>)</span><span class='Function'>F</span><span class='Modifier'>¨</span><span class='Paren'>(</span><span class='Function'><</span><span class='Modifier2'>⎉</span><span class='Value'>k𝕩</span><span class='Paren'>)</span></code>.</p> |
