/* * The MIT License (MIT) * * Copyright (c) 2022 MDC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #define IDN "EsPiFF-USBTMC" #define IDN_QUERY "*idn?" #define RST_CMD "*rst" #define DAC1_CMD "sourc1:volt:lev " // SOURCe1:VOLTage:LEVel #define DAC1_QUERY "sourc1:volt:lev?" // SOURCe1:VOLTage:LEVel //todo: add sourc2/3/4/..... #define ADC1_QUERY "sens1:volt?" // SENSe1:VOLTage //todo: add sens2/3/4/..... #define GPIO_LEV_CMD "gpio1:lev " // GPIO1:LEVel #define GPIO_LEV_QUERY "gpio1:lev?" // GPIO1:LEVel #define GPIO_DIR_CMD "gpio1:dir " // GPIO1:DIRection #define GPIO_DIR_QUERY "gpio1:dir?" // GPIO1:DIRection //todo: add gpio2/3/4/..... #define END_RESPONSE "\n" // USB488 #include #include /* atoi */ #include /* fprintf */ #include "tusb.h" #include "bsp/board.h" #include "main.h" #include "pico/stdlib.h" #include "pico/stdlib.h" #include "pico/binary_info.h" #include "hardware/spi.h" char * get_value(char *in_string); uint32_t adc_get_sample(void); void ftoa(float num, char *str); #if (CFG_TUD_USBTMC_ENABLE_488) static usbtmc_response_capabilities_488_t const #else static usbtmc_response_capabilities_t const #endif tud_usbtmc_app_capabilities = { .USBTMC_status = USBTMC_STATUS_SUCCESS, .bcdUSBTMC = USBTMC_VERSION, .bmIntfcCapabilities = { .listenOnly = 0, .talkOnly = 0, .supportsIndicatorPulse = 1 // there is currently no direct LED addressable on the EsPiFF. Ether ask the ESP32 to light up a LED, or the HAT must provide an LED }, .bmDevCapabilities = { .canEndBulkInOnTermChar = 0 }, #if (CFG_TUD_USBTMC_ENABLE_488) .bcdUSB488 = USBTMC_488_VERSION, .bmIntfcCapabilities488 = { .supportsTrigger = 1, .supportsREN_GTL_LLO = 0, .is488_2 = 1 }, .bmDevCapabilities488 = { .SCPI = 1, .SR1 = 0, .RL1 = 0, .DT1 =0, } #endif }; #define IEEE4882_STB_QUESTIONABLE (0x08u) #define IEEE4882_STB_MAV (0x10u) #define IEEE4882_STB_SER (0x20u) #define IEEE4882_STB_SRQ (0x40u) //static const char idn[] = "TinyUSB,Seeeduino Xiao,v1\r\n"; static volatile uint8_t status; // 0=not query, 1=queried, 2=delay,set(MAV), 3=delay 4=ready? // (to simulate delay) static volatile uint16_t queryState = 0; static volatile uint32_t queryDelayStart; static volatile uint32_t bulkInStarted; static volatile bool idnQuery; static volatile bool rst_cmd; static volatile bool dac_cmd1, dac_cmd2, dac_cmd3, dac_cmd4; static volatile bool dac_query1, dac_query2, dac_query3, dac_query4; static volatile bool adc_query1, adc_query2, adc_query3, adc_query4; static volatile bool gpio_lev_cmd; static volatile bool gpio_lev_query; static volatile bool gpio_dir_cmd; static volatile bool gpio_dir_query; static uint32_t resp_delay = 125u; // Adjustable delay, to allow for better testing static size_t buffer_len; static size_t buffer_tx_ix; // for transmitting using multiple transfers static uint8_t buffer[225]; // A few packets long should be enough. char adc_voltage_str[10]; char dac_voltage_str[10]; char gpio_lev_str[2]; char gpio_dir_str[5]; // HAT specific implementation: void gpio_setup(uint8_t ch); void dac_setup(uint8_t ch); void adc_setup(uint8_t ch); uint32_t adc_get_sample(uint8_t ch); void set_gpio_as_input(uint8_t ch); void set_gpio_as_output(uint8_t ch); bool is_gpio_output(uint8_t ch); uint32_t get_DAC_value(uint8_t ch); void dac_set_value(uint8_t ch, uint32_t new_val); static usbtmc_msg_dev_dep_msg_in_header_t rspMsg = { .bmTransferAttributes = { .EOM = 1, .UsingTermChar = 0 } }; void tud_usbtmc_open_cb(uint8_t interface_id) { (void)interface_id; tud_usbtmc_start_bus_read(); } #if (CFG_TUD_USBTMC_ENABLE_488) usbtmc_response_capabilities_488_t const * #else usbtmc_response_capabilities_t const * #endif tud_usbtmc_get_capabilities_cb() { return &tud_usbtmc_app_capabilities; } bool tud_usbtmc_msg_trigger_cb(usbtmc_msg_generic_t* msg) { (void)msg; // Let trigger set the SRQ status |= IEEE4882_STB_SRQ; return true; } bool tud_usbtmc_msgBulkOut_start_cb(usbtmc_msg_request_dev_dep_out const * msgHeader) { (void)msgHeader; buffer_len = 0; if(msgHeader->TransferSize > sizeof(buffer)) { return false; } return true; } bool tud_usbtmc_msg_data_cb(void *data, size_t len, bool transfer_complete) { // If transfer isn't finished, we just ignore it (for now) if(len + buffer_len < sizeof(buffer)) { memcpy(&(buffer[buffer_len]), data, len); buffer_len += len; } else { return false; // buffer overflow! } queryState = transfer_complete; idnQuery = false; rst_cmd = false; dac_cmd1 = false; dac_cmd2 = false; dac_cmd3 = false; dac_cmd4 = false; dac_query1 = false; dac_query2 = false; dac_query3 = false; dac_query4 = false; adc_query1 = false; adc_query2 = false; adc_query3 = false; adc_query4 = false; gpio_lev_cmd = false; gpio_lev_query = false; gpio_dir_cmd = false; gpio_dir_query = false; if(transfer_complete && (len >=4) && !strncasecmp(IDN_QUERY,data,5)) { idnQuery = true; } else if (transfer_complete && (len >=4) && !strncasecmp(RST_CMD,data,4)) { rst_cmd = true; clear_DAC_value(); } else if (transfer_complete && (len >=16) && !strncasecmp(DAC1_CMD,data,16)) { dac_cmd1 = true; char *ptr_value = get_value(data); float dac_voltage = strtof(ptr_value,NULL); uint16_t dac_value = (int)( (dac_voltage / DAC_REF_VOLTAGE) * DAC_MAX_VALUE ); dac_set_value(1, dac_value); } else if (transfer_complete && (len >= 16) && !strncasecmp(DAC1_QUERY,data,16)) { dac_query1 = true; float dac_voltage = (float)get_DAC_value(); ftoa(dac_voltage,dac_voltage_str); // strcat(dac_voltage_str,"\n"); } else if (transfer_complete && (len >= 11) && !strncasecmp(ADC1_QUERY,data,11)) { adc_query1 = true; float adc_voltage =(float)(adc_get_sample()) / ADC_MAX_VALUE * ADC_REF_VOLTAGE; ftoa(adc_voltage,adc_voltage_str); } else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_LEV_CMD,data,10)) { gpio_lev_cmd = true; char *ptr_value = get_value(data); int gpio_level = atoi(ptr_value); if (gpio_level == 1) { set_gpio_high(1, true); } else if (gpio_level == 0) { set_gpio_high(1, false); // drive low value } } else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_LEV_QUERY,data,10)) { gpio_lev_query = true; if ( is_gpio_high(1) ) { strcpy(gpio_lev_str,"1"); } else { strcpy(gpio_lev_str,"0"); } } else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_DIR_CMD,data,10)) { gpio_dir_cmd = true; char *ptr_value = get_value(data); if (!strncasecmp("IN",ptr_value,2)) { set_gpio_as_input(1); // PA10 as input } else if (!strncasecmp("OUT",ptr_value,3)) { set_gpio_as_output(1); // PA10 as output } } else if (transfer_complete && (len >= 10) && !strncasecmp(GPIO_DIR_QUERY,data,10)) { gpio_dir_query = true; if (is_gpio_output() ) { strcpy(gpio_dir_str,"OUT"); } else { strcpy(gpio_dir_str,"IN"); } } if(transfer_complete && !strncasecmp("delay ",data,5)) { queryState = 0; int d = atoi((char*)data + 5); if(d > 10000) d = 10000; if(d<0) d=0; resp_delay = (uint32_t)d; } tud_usbtmc_start_bus_read(); return true; } bool tud_usbtmc_msgBulkIn_complete_cb() { if((buffer_tx_ix == buffer_len) || idnQuery) // done { status &= (uint8_t)~(IEEE4882_STB_MAV); // clear MAV queryState = 0; bulkInStarted = 0; buffer_tx_ix = 0; } tud_usbtmc_start_bus_read(); return true; } static unsigned int msgReqLen; bool tud_usbtmc_msgBulkIn_request_cb(usbtmc_msg_request_dev_dep_in const * request) { rspMsg.header.MsgID = request->header.MsgID, rspMsg.header.bTag = request->header.bTag, rspMsg.header.bTagInverse = request->header.bTagInverse; msgReqLen = request->TransferSize; #ifdef xDEBUG uart_tx_str_sync("MSG_IN_DATA: Requested!\r\n"); #endif if(queryState == 0 || (buffer_tx_ix == 0)) { TU_ASSERT(bulkInStarted == 0); bulkInStarted = 1; // > If a USBTMC interface receives a Bulk-IN request prior to receiving a USBTMC command message // that expects a response, the device must NAK the request (*not stall*) } else { size_t txlen = tu_min32(buffer_len-buffer_tx_ix,msgReqLen); tud_usbtmc_transmit_dev_msg_data(&buffer[buffer_tx_ix], txlen, (buffer_tx_ix+txlen) == buffer_len, false); buffer_tx_ix += txlen; } // Always return true indicating not to stall the EP. return true; } void usbtmc_app_task_iter(void) { switch(queryState) { case 0: break; case 1: queryDelayStart = board_millis(); queryState = 2; break; case 2: if( (board_millis() - queryDelayStart) > resp_delay) { queryDelayStart = board_millis(); queryState=3; status |= 0x10u; // MAV status |= 0x40u; // SRQ } break; case 3: if( (board_millis() - queryDelayStart) > resp_delay) { queryState = 4; } break; case 4: // time to transmit; if(bulkInStarted && (buffer_tx_ix == 0)) { if(idnQuery) { tud_usbtmc_transmit_dev_msg_data(IDN, tu_min32(sizeof(IDN)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else if (adc_query1) { tud_usbtmc_transmit_dev_msg_data(adc_voltage_str, tu_min32(sizeof(adc_voltage_str)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else if (dac_query1) { tud_usbtmc_transmit_dev_msg_data(dac_voltage_str, tu_min32(sizeof(dac_voltage_str)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else if (gpio_lev_query) { tud_usbtmc_transmit_dev_msg_data(gpio_lev_str, tu_min32(sizeof(gpio_lev_str)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else if (gpio_dir_query) { tud_usbtmc_transmit_dev_msg_data(gpio_dir_str, tu_min32(sizeof(gpio_dir_str)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else if (rst_cmd || dac_cmd1 || gpio_lev_cmd || gpio_dir_cmd) { tud_usbtmc_transmit_dev_msg_data(END_RESPONSE, tu_min32(sizeof(END_RESPONSE)-1,msgReqLen),true,false); queryState = 0; bulkInStarted = 0; } else { buffer_tx_ix = tu_min32(buffer_len,msgReqLen); tud_usbtmc_transmit_dev_msg_data(buffer, buffer_tx_ix, buffer_tx_ix == buffer_len, false); } // MAV is cleared in the transfer complete callback. } break; default: TU_ASSERT(false,); return; } } bool tud_usbtmc_initiate_clear_cb(uint8_t *tmcResult) { *tmcResult = USBTMC_STATUS_SUCCESS; queryState = 0; bulkInStarted = false; status = 0; return true; } bool tud_usbtmc_check_clear_cb(usbtmc_get_clear_status_rsp_t *rsp) { queryState = 0; bulkInStarted = false; status = 0; buffer_tx_ix = 0u; buffer_len = 0u; rsp->USBTMC_status = USBTMC_STATUS_SUCCESS; rsp->bmClear.BulkInFifoBytes = 0u; return true; } bool tud_usbtmc_initiate_abort_bulk_in_cb(uint8_t *tmcResult) { bulkInStarted = 0; *tmcResult = USBTMC_STATUS_SUCCESS; return true; } bool tud_usbtmc_check_abort_bulk_in_cb(usbtmc_check_abort_bulk_rsp_t *rsp) { (void)rsp; tud_usbtmc_start_bus_read(); return true; } bool tud_usbtmc_initiate_abort_bulk_out_cb(uint8_t *tmcResult) { *tmcResult = USBTMC_STATUS_SUCCESS; return true; } bool tud_usbtmc_check_abort_bulk_out_cb(usbtmc_check_abort_bulk_rsp_t *rsp) { (void)rsp; tud_usbtmc_start_bus_read(); return true; } void tud_usbtmc_bulkIn_clearFeature_cb(void) { } void tud_usbtmc_bulkOut_clearFeature_cb(void) { tud_usbtmc_start_bus_read(); } // Return status byte, but put the transfer result status code in the rspResult argument. uint8_t tud_usbtmc_get_stb_cb(uint8_t *tmcResult) { uint8_t old_status = status; status = (uint8_t)(status & ~(IEEE4882_STB_SRQ)); // clear SRQ *tmcResult = USBTMC_STATUS_SUCCESS; // Increment status so that we see different results on each read... return old_status; } bool tud_usbtmc_indicator_pulse_cb(tusb_control_request_t const * msg, uint8_t *tmcResult) { (void)msg; led_indicator_pulse(); *tmcResult = USBTMC_STATUS_SUCCESS; return true; } //---------------------------- New Code ----------------------------// void adc_setup(void) { // todo: HAT specific implementation } uint32_t adc_get_sample(void) { // todo: HAT specific implementation. //return the ADC value as an uint32_t } void dac_setup(void) { //todo: HAT specific } void gpio_setup(void) { //todo: HAT specific } char * get_value(char *in_string) { char *ptr = strrchr(in_string,' ') + 1; return ptr; } // char *ptr_value = get_value(scpi_string); // float value = strtof(ptr_value,NULL); // char *command = get_command(scpi_string,ptr_value); char * get_command(char *in_string, char *ptr_value) { uint32_t command_len = ptr_value - in_string - 1; char *command = (char *) malloc(command_len +1); memcpy(command, in_string, command_len); command[command_len] = '\0'; return command; } void ftoa(float num, char *str) { int intpart = num; int intdecimal; uint32_t i; float decimal_part; char decimal[20]; memset(str, 0x0, 20); itoa(num, str, 10); strcat(str, "."); decimal_part = num - intpart; intdecimal = decimal_part * 1000; if(intdecimal < 0) { intdecimal = -intdecimal; } itoa(intdecimal, decimal, 10); for(i =0;i < (3 - strlen(decimal));i++) { strcat(str, "0"); } strcat(str, decimal); }