# Invertible (⊑≡⊑⌾⊢) ⟨↕3,2,<"abc"⟩ 3 (+≡+⌾⊣) 4 (¯2⊸↓ ≡ 2⊸↓⌾⌽) ↕6 (1⊸↓⌾⍉ ≡ 1⊸↓˘) ↕3‿3 7(⥊⌾(<˘)≡·<˘⁼⥊⟜(<˘))3‿3⥊↕9 "abcd" (⊣≡»⌾≍) ↕4 ! % ⍉⌾≍ "abc" (⌽∘|⊸/4‿¯3) ≡ ↕∘≠⊸-⌾(3⊸⌽)↕7 # Structural # Monad "bbcd" ≡ 1⊸+⌾⊑ "abcd" (<∘- ≡ -⌾⊑) 4 (⌽⌾⊏ ≡ ⌽⊸≍˝) "abc"≍"def" ! % -⌾⊏ 4 1 ≡ "cd"‿"ab"⊸⊐⌾< "ab" (0‿1+⌜0‿4‿2) ≡ ⍋∘⍋⌾⥊ "apl"≍"bqn" 2 (⌽⌾⥊ ≡ 12|+) ⥊⟜(↕×´)6‿2 ↕∘≠⊸+{𝔽≡𝔽¨⌾↑} "abcde" 2⊸+{𝔽≡𝔽¨⌾↓} "abcde" # Dyad ! % ↕∘≠⊸+⌾(10⊸⥊)↕6 (⌽⍒⌊2÷˜↕7) ≡ ⌽˘⌾(⌊‿2⥊⊢)↕7 ¯1‿0‿1‿3 ≡ -⟜(+´÷≠)⌾(3⊸↑)↕4 "adcb" ≡ ⌽⌾(1⊸↓)"abcd" 5‿6‿3‿0 ≡ (5‿3‿1⌾(0‿0⊸⍉)4‿3⥊0) +´∘×⎉1‿∞ 1+↕3 "AbcD" ≡ ('A'-'a')⊸+⌾(1‿0‿0‿1⊸/)"abcd" "AbcD" ≡ "ABCD"⊣⌾(1‿0‿0‿1⊸/)"abcd" ! % ↕∘≠⊸+⌾(2⊸/)↕5 (1⊸⌽ ≡ 2⊸⌽⌾(2⊸/)) ↕5 "bdca" ≡ 1⊸⌽⌾(1‿3‿0⊸⊏)"abcd" ! % 1⊸⌽⌾(1‿3‿3‿0⊸⊏)"abcd" ((¯1⋆2∧⌜○(⌽0=↕)3)⊸× ≡ -⌾(1‿2⊑⊢))↕2‿3 ((0‿3≍1‿2)⊸+ ≡ ⟨1,2‿3⟩⊸+⌾(⟨1‿0,⟨1‿1,0‿1⟩⟩⊸⊑))↕2‿2 # Compound (1+↕3) ≡ 1⊸↓⌾(@⊢·⊑<)↕4 "210abc" ≡ ⌽⌾((2÷˜≠)⊸↑)"012abc" "bac"‿'d' ≡ ⌽⌾(2↑⊑)"abc"‿'d' (⌽¨⌾(<2‿3⊸⊏) ≡ ⌽⌾(2‿3⊸⊏)) "abcdef" # Fills ! % ⌽⌾(1↓4↑⊢)"abc" # Computational 3 % 1⊸+⌾-4 20 % ⌊0.5+ 4+⌾(⋆⁼)5 2 % ⊢⌾2 3 -2 % ⊢⌾(2∘-) 3 ∘‿+ ≡ ⊢⌾∘‿+ 1