# This file gives reference implementations of BQN primitives assuming # limited initial functionality. Implementations are designed to be # simple and not fast. # Not yet included: complex numbers or comparison tolerance. # In some cases an operation is defined with limited functionality at # first and later expanded. For convenience, rather than renaming these # limited versions, every primitive use refers to the most recent # definition in source code, as if redefinitions shadowed previous # primitive definitions. #⌜ # LAYER 0: Assumed functionality # IEEE 754, except NaN results cause an error and -0 is converted to 0. # LIMITED to the stated cases and atomic arguments. + # Add - # Negate Subtract × # Multiply ÷ # Reciprocal Divide ⋆ # Exponential Power ⌊ # Floor = # Equals ≤ # Less Than or Equal to # Other basic functionality that we need to assume Type # 0 if 𝕩 is an array, 1 if a number, >1 otherwise ! # 𝕩 is 0 or 1; throw an error if it's 0 ≢ # LIMITED to monadic case ⥊ # LIMITED to array 𝕩 and (×´𝕨)≡≢𝕩 ⊑ # LIMITED to natural number 𝕨 and list 𝕩 _amend # {𝕨˙⌾(𝕗⊸⊑)𝕩} ↕ # LIMITED to number 𝕩 Identity # Left or right identity of function 𝕏 ⁼ # Inverse of function 𝔽 Fill # Enclosed fill value for 𝕩 #⌜ # LAYER 1: Foundational operators and functions # Combinators ◶ ← {𝕨((𝕨𝔽𝕩)⊑𝕘){𝔽}𝕩} # LIMITED to number left operand result ˙ ← {𝕩⋄𝕗} ⊘ ← {𝕨((1˙𝕨)-0)◶𝔽‿𝔾 𝕩} ⊢ ← {𝕩} ⊣ ← {𝕩}⊘{𝕨} ˜ ← {𝕩𝔽𝕨⊣𝕩} ∘ ← {𝔽𝕨𝔾𝕩} ○ ← {(𝔾𝕨)𝔽𝔾𝕩} ⊸ ← {(𝔽𝕨⊣𝕩)𝔾𝕩} ⟜ ← {(𝕨⊣𝕩)𝔽𝔾𝕩} ⍟ ← {𝕨𝔾◶⊢‿𝔽𝕩} # LIMITED to boolean right operand result IsArray←0=Type Int←(1=Type)◶⟨0,⌊⊸=⟩ Nat←(1=Type)◶⟨0,0⊸≤×⌊⊸=⟩ ≢ ↩ IsArray◶⟨⟩‿≢ # LIMITED to monadic case # LIMITED to numeric arguments for arithmetic cases √ ← ⋆⟜(÷2) ⊘ (⋆⟜÷˜) ∧ ← × ∨ ← (+-×) ¬ ← 1+- | ← ×⟜× ⊘ {𝕩-𝕨×⌊𝕩÷𝕨} < ← {⟨⟩⥊⟨𝕩⟩} ⊘ (¬≤˜) > ← (¬≤) ≥ ← !∘0 ⊘ (≤˜) ≠ ← Length ⊘ (¬=) = ↩ Rank ⊘ = × ↩ 0⊸(<->) ⊘ × ⌊ ↩ ⌊ ⊘ {𝕨{(𝕨>𝕩)⊑𝕨‿𝕩}_perv𝕩} ⌈ ← -∘⌊∘- ⊘ {𝕨{(𝕨<𝕩)⊑𝕨‿𝕩}_perv𝕩} ¨ ← _eachm # LIMITED to monadic case and array 𝕩 ´ ← _fold Rank ← 0⊑≢∘≢ Length ← (0‿0 , ≥‿1 ⟩ _fold←{ ! 1==𝕩 l←≠v←𝕩 ⋄ F←𝔽 r←𝕨 (0○=)◶⟨𝔽_e⋄𝔽˜_e˜⟩ } ⌜ ← {(𝔽_eachm)⊘(𝔽_table)○ToArray} ¨ ↩ {(𝔽_eachm)⊘(𝔽_eachd)○ToArray} _perv←{ # Pervasion (⊢⊘∨○IsArray)◶⟨𝔽⋄𝔽{𝕨𝔽_perv𝕩}¨⟩ } #⌜ # LAYER 3: Remove other limits # Now all implementations are full except ∾; ↕ is monadic only Deshape←IsArray◶{⟨𝕩⟩}‿⥊ Reshape←{ ! 1≥=𝕨 s←Deshape 𝕨 sp←+´p←¬Nat⌜s ! 1≥sp n←≠d←Deshape 𝕩 l←sp◶(×´)‿{ lp←×´p⊣◶⊢‿1¨𝕩 ! 0 ↩ Merge⍟IsArray ⊘ > ≍ ← >∘Pair ⎉ ← _rankOp_ ⚇ ← _depthOp_ ⍟ ↩ _repeat_ ˘ ← ⎉¯1 ˝ ← _insert ` ← _scan DropV← {⊑⟜𝕩¨𝕨+↕𝕨-˜≠𝕩} Cell ← DropV⟜≢ Pair ← {⟨𝕩⟩} ⊘ {⟨𝕨,𝕩⟩} Merge←(0<≠∘⥊)◶((∾○≢⥊⊢)⟜Fill)‿{ c←≢⊑𝕩 ! ∧´⥊(c≡≢)¨𝕩 𝕩⊑⟜ToArray˜⌜↕c } ValidateRanks←{ ! 1≥=𝕩 𝕩↩⥊𝕩 ! (1⊸≤∧≤⟜3)≠𝕩 ! ∧´Int¨𝕩 𝕩 } _ranks ← {⟨2⟩⊘⟨1,0⟩ ((⊣-1+|)˜⟜≠⊑¨<∘⊢) ValidateRanks∘𝔽} _depthOp_←{ neg←0>n←𝕨𝔾_ranks𝕩 ⋄ F←𝔽 _d←{ R←(𝕗+neg)_d 𝕨(2⥊(neg∧𝕗≥0)∨(0⌈𝕗)≥Pair○≡)◶(⟨R¨⋄R⟜𝕩¨∘⊣⟩≍⟨(𝕨R⊢)¨∘⊢⋄F⟩)𝕩 } 𝕨 n _d 𝕩 } _rankOp_←{ k←𝕨(Pair○= (0≤⊢)◶⟨⌊⟜-,0⌈-⟩¨ 𝔾_ranks)𝕩 Enc←{ f←⊑⟜(≢𝕩)¨↕𝕨 c←×´s←𝕨Cell𝕩 f⥊⊑⟜(⥊𝕩)¨∘((s⥊↕c)+c×⊢)¨↕×´f } Enc↩(>⟜0×1+≥⟜=)◶⟨<⊢,Enc,<⌜⊢⟩ > ((⊑k)Enc𝕨) 𝔽¨ ((1-˜≠)⊸⊑k)Enc𝕩 } _insert←{ ! 1≤=𝕩 𝕨 𝔽´ <˘𝕩 } _scan←{ ! IsArray 𝕩 ! 1≤=𝕩 F←𝔽 cs←1 Cell 𝕩 ! (cs≡≢)𝕨 l←≠r←⥊𝕩 𝕨 (00)+(-s)⌈s⌊𝕨)↑𝕩 } Prefixes ← {!1≤=𝕩 ⋄ (↕1+≠𝕩)Take¨<𝕩} Suffixes ← {!1≤=𝕩 ⋄ (↕1+≠𝕩)Drop¨<𝕩} ShiftBefore ← {!𝕨1⊸⌈⊸≤○=𝕩 ⋄ ( ≠𝕩) ↑ 𝕨 JoinTo 𝕩} ShiftAfter ← {!𝕨1⊸⌈⊸≤○=𝕩 ⋄ (-≠𝕩) ↑ 𝕩 JoinTo 𝕨} Nudge ← (1↑0↑⊢)⊸ShiftBefore NudgeBack ← (1↑0↑⊢)⊸ShiftAfter Windows←{ ! 1≥=𝕨 ! 𝕨≤○≠≢𝕩 ! ∧´Nat¨⥊𝕨 s←(≠𝕨)↑≢𝕩 ! ∧´𝕨≤1+s 𝕨{(∾⟜(𝕨≠⊸↓≢𝕩)∘≢⥊>)<¨⊸⊏⟜𝕩¨s(¬+⌜○↕⊢)⥊𝕨}⍟(0<≠𝕨)𝕩 } Reverse ← {!1≤=𝕩 ⋄ (-↕⊸¬≠𝕩)⊏𝕩} Rotate ← {!Int𝕨 ⋄ l←≠𝕩⋄(l|𝕨+↕l)⊏𝕩} _onAxes_ 0 Indices←{ ! 1==𝕩 ! ∧´Nat¨𝕩 ⟨⟩∾´𝕩⥊¨↕≠𝕩 } Rep ← Indices⊸⊏ Replicate ← {0<=𝕨}◶(⥊˜⟜≠Rep⊢)‿{!𝕨=○≠𝕩⋄𝕨Rep𝕩} _onAxes_ (1-0=≠) #⌜ # LAYER 6: Everything else ∾ ↩ Join ⊘ JoinTo ⊔ ← GroupInds ⊘ Group ⍉ ← Transpose ⊘ ReorderAxes ∊ ← MarkFirst ⊘ (IndexOf˜<≠∘⊢) ⍷ ← ∊⊸/ ⊘ Find ⊐ ← ⍷⊸IndexOf ⊘ IndexOf ⍋ ← Cmp _grade ⊘ ( Cmp _bins) ⍒ ← -∘Cmp _grade ⊘ (-∘Cmp _bins) ∧ ↩ ⍋⊸⊏ ⊘ ∧ ∨ ↩ ⍒⊸⊏ ⊘ ∨ ⊒ ← OccurrenceCount⊘ ProgressiveIndexOf { Identity ↩ 𝕨˙⊸=◶Identity‿𝕩 }´¨ ⟨ ∨‿0 , ∧‿1 ⟩ Join←(0<=)◶{!IsArray𝕩⋄>𝕩}‿{ C←(<⟨⟩)⥊⊸∾⌜´⊢ # Cartesian array product ! IsArray 𝕩 s←≢¨𝕩 d←≠⊑s ! ∧´⥊d=≠¨s ! d≥=𝕩 l←(≢𝕩){(𝕩⊑⟜≢a⊑˜(j=𝕩)⊸×)¨↕𝕨}¨j←↕r←=a←𝕩 ! (r↑¨s)≡C l i←C{p←+´¨↑𝕩⋄(↕⊑⌽p)-𝕩/¯1↓p}¨l >i<¨⊸⊏¨l/𝕩 }⍟(0<≠∘⥊) Group←{ ! IsArray 𝕩 𝕨↩Pair∘ToArray⍟(2>≡)𝕨 ! 1==𝕨 {!∧´Int¨𝕩⋄!∧´¯1≤𝕩}∘⥊¨𝕨 n←+´r←=¨𝕨 ! n≤=𝕩 ld←(∾≢⌜𝕨)-n↑≢𝕩 ! ∧´(0⊸≤∧≤⟜(r/1=r))ld dr←r⌊(0»+`r)⊏ld∾⟨0⟩ s←dr⊣◶⟨0,¯1⊸⊑⟩¨𝕨 𝕨↩dr(⥊¯1⊸↓⍟⊣)¨𝕨 s⌈↩1+¯1⌈´¨𝕨 𝕩↩((≠¨𝕨)∾n↓≢𝕩)⥊𝕩 (𝕨⊸=/𝕩˙)¨↕s } GroupInds←{ ! 1==𝕩 𝕩 ⊔ ↕ (1<≡)◶≠‿(∾≢¨) 𝕩 } # Searching IndexOf←{ c←1-˜=𝕨 ! 0≤c ! c≤=𝕩 𝕨 ∧○(0<≠)⟜⥊◶⟨0⥊˜c-⊸↓≢∘⊢, (+˝∧`)≢⎉c⎉c‿∞⟩ 𝕩 } MarkFirst←{ ! 1≤=𝕩 u←0↑𝕩 (0<≠)◶⟨⟨⟩,{⊑𝕩∊u}◶{u↩u∾𝕩⋄1}‿0˘⟩𝕩 } Find←{ r←=𝕨 ! r≤=𝕩 𝕨 ≡⎉r ((1+r-⊸↑≢𝕩)⌊≢𝕨)⊸↕⎉r 𝕩 }○ToArray ReorderAxes←{ 𝕩↩<⍟(0=≡)𝕩 ! 1≥=𝕨 𝕨↩⥊𝕨 ! 𝕨≤○≠≢𝕩 ! ∧´Nat¨⥊𝕨 r←(=𝕩)-+´¬∊𝕨 ! ∧´𝕨-<)𝕩 # Assume they're numbers }‿{ # At least one array e←𝕨-˜○(∨´0=≢)𝕩 𝕨(e=0)◶e‿{ c←𝕨×∘-○(IsArray+=)𝕩 s←≢𝕨 ⋄ t←≢𝕩 ⋄ r←𝕨⌊○=𝕩 l←s{i←+´∧`𝕨=𝕩⋄m←×´i↑𝕨⋄{c↩×-´𝕩⋄m↩m×⌊´𝕩}∘(⊑¨⟜𝕨‿𝕩)⍟(r⊸>)i⋄m}○(r↑⌽)t a←⥊𝕨⋄b←⥊𝕩 Trav←(=⟜l)◶{Trav∘(1+𝕩)⍟(0⊸=)a Cmp○(𝕩⊸⊑)b}‿c Trav 0 }𝕩 } _grade←{ ! 1≤=𝕩 i⊐˜+´˘(𝔽⎉∞‿¯1⎉¯1‿∞˜𝕩)(⌈⟜0+=⟜0⊸×)>⌜˜i←↕≠𝕩 } _bins←{ c←1-˜=𝕨 ! 0≤c ! c≤=𝕩 LE←𝔽⎉c≤0˜ ! (0<≠)◶⟨1,∧´·LE˝˘2↕⊢⟩𝕨 𝕨 (0<≠𝕨)◶⟨0⎉c∘⊢,+˝LE⎉¯1‿∞⟩ 𝕩 } OccurrenceCount ← ⊐˜(⊢-⊏)⍋∘⍋ ProgressiveIndexOf ← {𝕨⊐○(((≢∾2˙)⥊≍˘⟜OccurrenceCount∘⥊)𝕨⊸⊐)𝕩}