# This file gives reference implementations of BQN primitives assuming # limited initial functionality. Implementations are designed to be # simple and not fast. # Not yet included: characters, complex numbers, comparison tolerance, # selective assignment, and Under. # In some cases an operation is defined with limited functionality at # first and later expanded. For convenience, rather than renaming these # limited versions, every primitive use refers to the most recent # definition in source code, as if redefinitions shadowed previous # primitive definitions. #⌜ # LAYER 0: Assumed functionality # IEEE 754, except NaN results cause an error and -0 is converted to 0. # LIMITED to the stated cases and real number arguments. + # Add - # Negate Subtract × # Multiply ÷ # Reciprocal Divide ⋆ # Exponential Power ⌊ # Floor = # Equals ≤ # Less Than or Equal to # Other basic functionality that we need to assume IsArray # Return 1 if 𝕩 is an array ! # 𝕩 is 0 or 1; throw an error if it's 0 ≢ # LIMITED to monadic case ⥊ # LIMITED to array 𝕩 and (×´𝕨)≡≢𝕩 ⊑ # LIMITED to natural number 𝕩 and vector 𝕨 _amend # {(𝕗⊑𝕩)↩𝕨⋄𝕩} ↕ # LIMITED to number 𝕩 Identity # Left or right identity of function 𝕏 ⁼ # Inverse of function 𝔽 Type # Scalar (enclosed) prototype of 𝕩 #⌜ # LAYER 1: Foundational operators and functions # Combinators ◶ ← {𝕨((𝕨𝔽𝕩)⊑𝕘){𝔽}𝕩} # LIMITED to number left operand result ⊘ ← {𝕨((1{𝔽}𝕨)-0)◶𝔽‿𝔾 𝕩} ⊢ ← {𝕩} ⊣ ← {𝕩}⊘{𝕨} ˜ ← {𝕩𝔽𝕨⊣𝕩} ∘ ← {𝔽𝕨𝔾𝕩} ○ ← {(𝔾𝕨)𝔽𝔾𝕩} ⊸ ← {(𝔽𝕨⊣𝕩)𝔾𝕩} ⟜ ← {(𝕨⊣𝕩)𝔽𝔾𝕩} # LIMITED to numeric arguments for scalar cases √ ← 2⊸√ ⊘ (⋆⟜÷˜) ∧ ← × ∨ ← (+-×) ¬ ← 1+- | ← ×⟜× ⊘ {𝕩-𝕨×⌊𝕩÷𝕨} < ← {⟨⟩⥊⟨𝕩⟩} ⊘ (¬≤˜) > ← (¬≤) ≥ ← !∘0 ⊘ (≤˜) ≠ ← Length ⊘ (¬∘=) × ↩ 0⊸(<->) ⊘ × ⌊ ↩ ⌊ ⊘ {(𝕨>𝕩)⊑𝕨‿𝕩} ⌈ ← -∘⌊∘- ⊘ {(𝕨<𝕩)⊑𝕨‿𝕩} ≢ ↩ IsArray◶⟨⟩‿≢ # LIMITED to monadic case ¨ ← _eachm # LIMITED to monadic case and array 𝕩 ´ ← _reduce _eachm←{ r←⥊𝕩 ⋄ F←𝔽 E←(≠r)⊸≤◶{r↩r𝕩_amend˜F𝕩⊑r⋄E𝕩+1}‿⊢ E 0 ⋄ (≢𝕩)⥊r } _reduce←{ ! 1=≠≢𝕩 l←≠v←𝕩 ⋄ F←𝔽 r←𝕨 (0○(≠≢))◶⟨𝔽_e⋄𝔽˜_e˜⟩ } _perv←{ # Pervasion (⊢⊘∨○IsArray)◶⟨𝔽⋄𝔽{𝕨𝔽_perv𝕩}¨⟩ } ⌜ ← {(𝔽_eachm)⊘(𝔽_table)○ToArray} ¨ ↩ {(𝔽_eachm)⊘(𝔽_eachd)○ToArray} #⌜ # LAYER 3: Remove other limits # Now all implementations are full except ∾; ↕ is monadic only Int←IsArray◶⟨⌊⊸=,0⟩ Nat←IsArray◶⟨0⊸≤∧⌊⊸=,0⟩ Deshape←IsArray◶{⟨𝕩⟩}‿⥊ Reshape←{ ! 1≥≠≢𝕨 𝕨↩⥊𝕨 ! ∧´Nat¨𝕨 n←≠𝕩 ⋄ l←×´𝕨 ! n≤○(0⊸=)l 𝕨⥊⊑⟜𝕩¨n|↕l }⟜Deshape Range←{ I←{!Nat𝕩⋄↕𝕩} M←{!1=≠≢𝕩⋄(<⟨⟩)⥊⊸∾⌜´I¨𝕩} IsArray◶I‿M 𝕩 } Pick1←{ ! 1=≠≢𝕨 ! 𝕨=○≠s←≢𝕩 ! ∧´Int¨𝕨 ! ∧´𝕨(≥⟜-∧<)s 𝕨↩𝕨+s×𝕨<0 (⥊𝕩)⊑˜0(⊑⟜𝕨+⊑⟜s×⊢)´-↕⊸¬≠𝕨 } Pickd←(∨´∘⥊IsArray¨∘⊣)◶Pick1‿{Pickd⟜𝕩¨𝕨} Pick←IsArray◶⥊‿⊢⊸Pickd match←{¬∘(0⊑𝕨)◶(1⊑𝕨)‿𝕩}´⟨ ⟨≠○IsArray , 0⟩ ⟨¬IsArray∘⊢, =⟩ ⟨≠○(≠≢) , 0⟩ ⟨∨´≠○≢ , 0⟩ {∧´⥊𝕨Match¨𝕩} ⟩ Depth←IsArray◶0‿{1+0⌈´Depth¨⥊𝕩} ⊑ ↩ (0¨∘≢)⊸Pick ⊘ Pick ⥊ ↩ Deshape ⊘ Reshape ↕ ↩ Range ◶ ↩ {𝕨((𝕨𝔽𝕩)⊑𝕘){𝔽}𝕩} # Same definition, new Pick ≡ ← Depth ⊘ Match ≢ ↩ ≢ ⊘ (¬Match) #⌜ # LAYER 4: Operators > ↩ Unbox ⊘ > ≍ ← >∘Pair ⎉ ← _rankOp_ ⚇ ← _depthOp_ ⍟ ← _iterate_ ˘ ← ⎉¯1 ` ← _scan DropV← {⊑⟜𝕩¨𝕨+↕𝕨-˜≠𝕩} Cell ← DropV⟜≢ Pair ← {⟨𝕩⟩} ⊘ {⟨𝕨,𝕩⟩} Unbox←(0<≠∘⥊)◶⊢‿{ c←≢⊑𝕩 ! ∧´⥊(c≡≢)¨𝕩 𝕩⊑⟜ToArray˜⌜↕c } _ranks ← {⟨2⟩⊘⟨1,0⟩((⊣-1+|)˜⟜≠⊑¨<∘⊢)⥊∘𝔽} _depthOp_←{ neg←0>n←𝕨𝔾_ranks𝕩 ⋄ F←𝔽 _d←{ R←(𝕗+neg)_d 𝕨(2⥊(neg∧𝕗≥0)∨(0⌈𝕗)≥Pair○≡)◶(⟨R¨⋄R⟜𝕩¨∘⊣⟩≍⟨(𝕨R⊢)¨∘⊢⋄F⟩)𝕩 } 𝕨 n _d 𝕩 } _rankOp_←{ k←𝕨(Pair○(≠≢) (0≤⊢)◶⟨⌊⟜-,0⌈-⟩¨ 𝔾_ranks)𝕩 Enc←{ f←⊑⟜(≢𝕩)¨↕𝕨 c←×´s←𝕨Cell𝕩 f⥊⊑⟜(⥊𝕩)¨∘((s⥊↕c)+c×⊢)¨↕×´f } > ((⊑k)Enc𝕨) 𝔽¨ ((1-˜≠)⊸⊑k)Enc𝕩 } _scan←{ ! IsArray 𝕩 ! 1≤≠≢𝕩 F←𝔽 (0<≠∘⥊)◶⊢‿{ r←⥊𝕩 ⋄ l←≠𝕩 ⋄ c←×´1 Cell 𝕩 {r↩r𝕩_amend˜𝕨F○(⊑⟜r)𝕩}⟜(c⊸+)¨↕c-˜≠r (≢𝕩)⥊r }𝕩 } _iterate_←{ n←𝕨𝔾𝕩 f←⊑𝕨⟨𝔽⟩⊘⟨𝕨𝔽⊢⟩𝕩 l←u←0 {!Int𝕩⋄l↩l⌊𝕩⋄u↩u⌈𝕩}⚇0 n a←𝕩⋄_p←{𝔽∘⊣`(1+𝕩)⥊0)+(-s)⌈s⌊𝕨)↑𝕩 } Prefixes ← {!1≤≠≢𝕩 ⋄ (↕1+≠𝕩)Take¨<𝕩} Suffixes ← {!1≤≠≢𝕩 ⋄ (↕1+≠𝕩)Drop¨<𝕩} Windows←{ ! IsArray 𝕩 ! 1≥≠≢𝕨 ! 𝕨≤○≠≢𝕩 ! ∧´Nat¨⥊𝕨 s←(≠𝕨)↑≢𝕩 ! ∧´𝕨≤1+s 𝕨{(∾⟜(𝕨≠⊸↓≢𝕩)∘≢⥊>)<¨⊸⊏⟜𝕩¨s(¬+⌜○↕⊢)⥊𝕨}⍟(0<≠𝕨)𝕩 } Reverse ← {!1≤≠≢𝕩 ⋄ (-↕⊸¬≠𝕩)⊏𝕩} Rotate ← {!Int𝕨 ⋄ l←≠𝕩⋄(l|𝕨+↕l)⊏𝕩} _onAxes_ 0 Indices←{ ! 1=≠≢𝕩 ! ∧´Nat¨𝕩 ⟨⟩∾´𝕩⥊¨↕≠𝕩 } Rep ← Indices⊸⊏ Replicate ← {0<≠≢𝕨}◶(⥊˜⟜≠Rep⊢)‿{!𝕨=○≠𝕩⋄𝕨Rep𝕩} _onAxes_ (1-0=≠) #⌜ # LAYER 6: Everything else ∾ ↩ Join ⊘ JoinTo ⊔ ← ⊔⟜(↕≠⚇1) ⊘ Group ⍉ ← Transpose ⊘ ReorderAxes ⊐ ← !∘0 ⊘ IndexOf ∊ ← UniqueMask ⊘ (⊐˜<≠∘⊢) ⍷ ← ∊⊸/ ⊘ Find ⍋ ← Cmp _grade ⊘ ( Cmp _bins) ⍒ ← -∘Cmp _grade ⊘ (-∘Cmp _bins) ∧ ↩ ⍋⊸⊏ ⊘ ∧ ∨ ↩ ⍒⊸⊏ ⊘ ∨ ⊒ ← OccurrenceCount⊘ ProgressiveIndexOf Join←{ C←(<⟨⟩)⥊⊸∾⌜´⊢ # Cartesian array product ! IsArray 𝕩 s←≢¨𝕩 d←≠⊑s ! ∧´⥊d=≠¨s ! d≥≠≢𝕩 l←(≢𝕩){(𝕩⊑⟜≢a⊑˜(j=𝕩)⊸×)¨↕𝕨}¨j←↕r←≠≢a←𝕩 ! (r↑¨s)≡C l i←C{p←+´¨↑𝕩⋄(↕⊑⌽p)-𝕩/¯1↓p}¨l >i<¨⊸⊏¨l/𝕩 }⍟(0<≠∘⥊) Group←{ ! IsArray 𝕩 Chk←{!1=≠≢𝕩⋄!∧´Int¨𝕩⋄!∧´¯1≤𝕩⋄≠𝕩} l←(1<≡)◶Chk‿{!1=≠≢𝕩⋄Chk¨𝕩}𝕨 ! l≤○≠≢𝕩 ! ∧´l=l≠⊸↑≢𝕩 (𝕨⊸=/𝕩˜)¨↕1+¯1⌈´⚇1𝕨 } # Searching IndexOf←{ c←1-˜≠≢𝕨 ! 0≤c 𝕨 (0<≠𝕨)◶⟨0⎉c∘⊢,((+´<˘)∧`)≢⎉c⎉c‿∞⟩ 𝕩 } UniqueMask←{ ! 1≤≠≢𝕩 u←0↑𝕩 {⊑𝕩∊u}⊘{u↩u∾𝕩⋄1}‿0˘𝕩 } Find←{ r←≠s←≢𝕨 ! r≤≠≢𝕩 𝕨 ≡⎉r s ↕⎉r 𝕩 } ReorderAxes←{ 𝕩↩<⍟(0=≡)𝕩 ! 1≥≠≢𝕨 𝕨↩⥊𝕨 ! 𝕨≤○≠≢𝕩 ! ∧´Nat¨⥊𝕨 r←(≠≢𝕩)-+´¬∊𝕨 ! ∧´𝕨-<)𝕩 # Assume they're numbers }‿{ # At least one array e←𝕨-˜○(∨´0=≢)𝕩 𝕨(e=0)◶e‿{ c←𝕨×∘-○(IsArray+≠∘≢)𝕩 s←≢𝕨 ⋄ t←≢𝕩 ⋄ r←s⌊○≠t l←s{i←+´∧`𝕨=𝕩⋄m←×´i↑𝕨⋄{c↩×-´𝕩⋄m↩m×⌊´𝕩}∘(⊑¨⟜𝕨‿𝕩)⍟(r⊸>)i⋄m}○(r↑⌽)t a←⥊𝕨⋄b←⥊𝕩 Trav←(=⟜l)◶{Trav∘(1+𝕩)⍟(0⊸=)a Cmp○(𝕩⊸⊑)b}‿c Trav 0 }𝕩 } _grade←{ ! 1≤≠≢𝕩 i⊐˜+´˘(𝔽⎉∞‿¯1⎉¯1‿∞˜𝕩)(⌈⟜0+=⟜0⊸×)>⌜˜i←↕≠𝕩 } _bins←{ r←1-˜≠≢𝕨 ! 0≤r LE←0≤𝔽⎉r ! ∧´LE´˘2↕<˘𝕩 +´𝕨LE⎉¯1‿∞𝕩 } OccurrenceCount ← ⊐˜(⊢-⊏)⍋∘⍋ ProgressiveIndexOf ← {𝕨⊐○(≍˘⟜OccurrenceCount𝕨⊸⊐)𝕩}