From 2afb23928e1984d475cc460e1672e8f6fa0e4dbe Mon Sep 17 00:00:00 2001 From: Marshall Lochbaum Date: Wed, 11 Aug 2021 17:21:31 -0400 Subject: Allow clicking on header to get fragment link --- docs/doc/expression.html | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'docs/doc/expression.html') diff --git a/docs/doc/expression.html b/docs/doc/expression.html index 20eb896e..614052fa 100644 --- a/docs/doc/expression.html +++ b/docs/doc/expression.html @@ -4,10 +4,10 @@ BQN: Expression syntax -

Expression syntax

+

Expression syntax

BQN expressions are the part of syntax that describes computations to perform. Programs are mainly made up of expressions with a little organizing material like blocks and namespaces around them. This page explains how functions, modifiers, and assignment combine with their inputs. It doesn't describe constant and array literals, which each form a single subject for grammatical purposes.

The first tutorial also covers how to build and read BQN expressions.

-

Overview

+

Overview

BQN expressions consist of subjects, functions, and modifiers arranged in sequence, with parentheses to group parts into subexpressions. Assignment arrows and can also be present and mostly behave similar to functions. Functions can be applied to subjects or grouped into trains, while modifiers can be applied to subjects or functions. The most important kinds of application are:

@@ -57,11 +57,11 @@

The four roles (subject, function, two kinds of modifier) describe expressions, not values. When an expression is evaluated, the value's type doesn't have to correspond to its role, and can even change from one evaluation to another. An expression's role is determined entirely by its source code, so it's fixed.

If you're comfortable reading BNF and want to understand things in more detail than described below, you might check the grammar specification as well.

-

Syntactic role

+

Syntactic role

This issue is approached from a different angle in Context free grammar.

In APL, the way one part of an expression interacts with others is determined by its value. That means that to parse an expression, in general you would have to evaluate that part, get a value, check its type, and then figure out how it fits in with the rest of the expression. This is a lot of work. BQN changes things so that you can determine how to parse an expression just by looking at its source code. But because it still needs to support expressions that can evaluate to more than one possible type, BQN has to introduce a new and independent concept, called syntactic role, in order to support APL-like expressions.

Syntactic role is a property of an expression, not its value. To describe it in terms of English grammar, you might say "I like BQN", using "BQN" as an object, or "BQN scares me", using it as a subject. BQN itself isn't a subject or object, it's a programming language. Similarly you might write F g, placing f in a function role to apply it to g, or G f to use f as an argument. Maybe even in the same program, although it's unlikely.

-

Role spellings

+

Role spellings

The four roles are subject, function, 1-modifier, and 2-modifier, as shown in the table below. Each type has an associated role (with non-operation types all corresponding to subjects), and the value of an expression will often have a matching type, but it doesn't have to.

@@ -98,7 +98,7 @@

Variable names can be written in any case and with underscores added, and these changes don't affect what identifier the name refers to. ab, aB, AB, and _a_B_ are all the same variable. However, the spelling—specifically the first and last characters—determine the variable's role. A lowercase first letter indicates a subject, and an uppercase first letter makes it a function. A leading underscore (regardless of the following character) indicates a 1-modifier, and both leading and trailing underscores makes a 2-modifier.

Besides these, character, string, and list literals always have a subject role, and the role of a block is determined by its type, which depends either on the header it has or which special variables it uses.

The role of a compound expression, formed by applying an operation to some inputs, depends on the operation applied. This system is discussed in the remaining sections below.

-

Kinds of application

+

Kinds of application

Here is a table of the modifier and function application rules:

-- cgit v1.2.3